Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 2
Article Contents

YUAN Jing, LI Yingchun, TAN Guili, HUANG Haibo, ZHANG Hua, LIU Jiao. Some Difficulties and Status in the Application of X-Ray Spectrometry in Geological Analysis: A Review[J]. Rock and Mineral Analysis, 2025, 44(2): 161-173. doi: 10.15898/j.ykcs.202403150052
Citation: YUAN Jing, LI Yingchun, TAN Guili, HUANG Haibo, ZHANG Hua, LIU Jiao. Some Difficulties and Status in the Application of X-Ray Spectrometry in Geological Analysis: A Review[J]. Rock and Mineral Analysis, 2025, 44(2): 161-173. doi: 10.15898/j.ykcs.202403150052

Some Difficulties and Status in the Application of X-Ray Spectrometry in Geological Analysis: A Review

More Information
  • X-ray fluorescence spectrometry (XRF) has become one of the widely used methods for main and trace elements analysis in geological samples, due to its characteristics of non-destructive, fast, environmentally-friendly and high analytical precision. Currently, XRF can qualitatively and quantitatively analyze most of the major and trace elements (4Be−92U, especially 10Na−92U) with the concentration ranges from μg/g to percent. However, there are still some difficulties in practical analysis of geological samples with XRF due to the complexity and diversity of mineral composition, physical structural characteristics (e.g. size, shape, delamination and inclusions) and chemical composition (e.g. elemental composition, chemical morphology) of geological samples. This paper elaborates difficulties and corresponding possible solutions of XRF analysis in geological samples from five aspects including small size samples or precious samples analysis, the application of scattering effect, the analysis of volatile elements, variable valence elements and rare metals. Finally, the limitations and challenges of the XRF technique that still exist in the geological analysis are presented. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202403150052.

  • 加载中
  • [1] Jalali M, Jalali M. Geochemistry and background concentration of major ions in spring waters in a high-mountain area of the Hamedan (Iran)[J]. Journal of Geochemical Exploration, 2016, 165: 49−61. doi: 10.1016/j.gexplo.2016.02.002

    CrossRef Google Scholar

    [2] Shaltout A A, Castilho I NB, Welz B, et al. Method development and optimization for the determination of selenium in bean and soil samples using hydride generation electrothermal atomic absorption spectrometry[J]. Talanta, 2011, 85(3): 1350−1356. doi: 10.1016/j.talanta.2011.06.015

    CrossRef Google Scholar

    [3] 陶春军, 李明辉, 马明海, 等. 皖南某典型富硒区土壤-水稻重金属生态风险评估[J]. 华东地质, 2023, 44(2): 160−171. doi: 10.16788/j.hddz.32-1865/P.2023.02.005

    CrossRef Google Scholar

    Tao C J, Li M H, Ma M H, et al. Ecological risk assessment of heavy metals in soil-rice in a typical selenium-rich area of southern Anhui Province[J]. East China Geology, 2023, 44(2): 160−171. doi: 10.16788/j.hddz.32-1865/P.2023.02.005

    CrossRef Google Scholar

    [4] 唐志敏, 张晓东, 张明, 等. 新安江流域土壤元素地球化学特征: 来自岩石建造类型的约束[J]. 华东地质, 2023, 44(2): 172−185. doi: 10.16788/j.hddz.32-1865/P.2023.02.006

    CrossRef Google Scholar

    Tang Z M, Zhang X D, Zhang M, et al. Geochemical characteristics of soil elements in Xin’an River Basin: Constraints from rock formation types[J]. East China Geology, 2023, 44(2): 172−185. doi: 10.16788/j.hddz.32-1865/P.2023.02.006

    CrossRef Google Scholar

    [5] Oliveira E. Sample preparation for atomic spectroscopy: evolution and future trends[J]. Journal of the Brazilian Chemical Society, 2003, 14(2): 174−182. doi: 10.1590/S0103-50532003000200004

    CrossRef Google Scholar

    [6] 姚泽, 王干珍, 何功秀, 等. X射线荧光光谱法测定锡矿石中锡[J]. 中国无机分析化学, 2022, 12(6): 48−53. doi: 10.3969/j.issn.2095-1035.2022.06.008

    CrossRef Google Scholar

    Yao Z, Wang G Z, He G X, et al. Determination of tin in tin ore by X-ray fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(6): 48−53. doi: 10.3969/j.issn.2095-1035.2022.06.008

    CrossRef Google Scholar

    [7] 李迎春, 张磊, 尚文郁. 粉末压片-X射线荧光光谱法分析富硒土壤样品中的硒及主次量元素[J]. 岩矿测试, 2022, 41(1): 145−152. doi: 10.15898/j.cnki.11-2131/td.202007090102

    CrossRef Google Scholar

    Li Y C, Zhang L, Shang W Y. Determination of selenium, major and minor elements in selenium-rich soil samples by X-ray fluorescence spectrometry with powder pellet preparation[J]. Rock and Mineral Analysis, 2022, 41(1): 145−152. doi: 10.15898/j.cnki.11-2131/td.202007090102

    CrossRef Google Scholar

    [8] 闵红, 刘倩, 张金阳, 等. X射线荧光光谱-X射线粉晶衍射-偏光显微镜分析12种产地铜精矿矿物学特征[J]. 岩矿测试, 2021, 40(1): 74−84. doi: 10.15898/j.cnki.11-2131/td.202004020038

    CrossRef Google Scholar

    Min H, Liu Q, Zhang J Y, et al. Study on the mineralogical characteristics of 12 copper concentrates by X-ray fluorescence spectrometry, X-ray powder diffraction and polarization microscope[J]. Rock and Mineral Analysis, 2021, 40(1): 74−84. doi: 10.15898/j.cnki.11-2131/td.202004020038

    CrossRef Google Scholar

    [9] 张敏, 甘黎明, 冯博鑫, 等. 熔融制样-X射线荧光光谱法测定铁矿石中铁、硅、铝[J/OL]. 中国无机分析化学(2024-07-06)[2024-03-15]. http://kns.cnki.net/kcms/detail/11.6005.O6.20240701.1017.002.html.

    Google Scholar

    Zhang M, Gan L M, Feng B X, et al. Determination of iron, silicon and aluminum in iron ore by X-ray fluorescence spectrometry with fusion sample preparation[J]. Chinese Journal of Inorganic Analytical Chemistry (2024-07-06)[2024-03-15]. http://kns.cnki.net/kcms/detail/11.6005.O6.20240701.1017.002.html.

    Google Scholar

    [10] 蒋奡松, 吴龙华, 李柱. 能量色散X射线荧光光谱技术在土壤重金属分析中的应用研究现状[J]. 岩矿测试, 2024, 43(4): 659−675.

    Google Scholar

    Jiang A S, Wu L H, Li Z. Application of energy-dispersive X-ray fluorescence spectroscopy in analysis of heavy metals in soil[J]. Rock and Mineral Analysis, 2024, 43(4): 659−675.

    Google Scholar

    [11] 陈春霏, 卢秋, 姚苏芝, 等. 粉末压片-X射线荧光光谱法测定富硅土壤和沉积物样品中的5种重金属元素[J]. 中国无机分析化学, 2024, 14(5): 513−520. doi: 10.3969/j.issn.2095-1035.2024.05.001

    CrossRef Google Scholar

    Chen C F, Lu Q, Yao S Z, et al. Determination of 5 heavy metal elements in silicon-rich soil sand sediments by X-ray fluorescence spectrometry with pressed powder pellet[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(5): 513−520. doi: 10.3969/j.issn.2095-1035.2024.05.001

    CrossRef Google Scholar

    [12] Li W J, Wang C L, Gao B Y, et al. Determination of multi-element concentrations at ultra-low levels in alternating magnetite and pyrite by HR-ICP-MS using matrix removal and preconcentration[J]. Microchemical Journal, 2016, 127: 237−246. doi: 10.1016/j.microc.2016.03.018

    CrossRef Google Scholar

    [13] Zhang W X, Shi Z T, Chen G J, et al. Geochemical characteristics and environmental significance of Talede loess-paleosol sequences of Ili Basin in central Asia[J]. Environmental Earth Sciences, 2013, 70(5): 2191−2202. doi: 10.1007/s12665-013-2323-1

    CrossRef Google Scholar

    [14] Kelka U, Veveakis M, Koehn D, et al. Zebra rocks: compaction waves create ore deposits[J]. Scientific Reports, 2017, 7(1): 1−9. doi: 10.1038/s41598-017-14541-3

    CrossRef Google Scholar

    [15] Nakayama K, Nakamura T. Undersized (12.5mm diameter) glass beads with minimal amount (11mg) of geochemical and archeological silicic samples for X-ray fluorescence determination of major oxides[J]. X-Ray Spectrometry, 2012, 41(4): 225−234. doi: 10.1002/xrs.2382

    CrossRef Google Scholar

    [16] Ichikawa S, Nakamura T. X-ray fluorescence analysis with micro glass beads using milligram-scale siliceous samples for archeology and geochemistry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 96: 40−50. doi: 10.1016/j.sab.2014.04.002

    CrossRef Google Scholar

    [17] Gazulla M F, Vicente S, Orduna M, et al. Chemical analysis of very small-sized samples by wavelength-dispersive X-ray fluorescence[J]. X-Ray Spectrometry, 2012, 41(3): 176−185. doi: 10.1002/xrs.2381

    CrossRef Google Scholar

    [18] Shakhreet B Z, Bauk S, Shukri A. Electron density ofRhizophora spp. wood using Compton scattering technique at 15.77, 17.48 and 22.16keV XRF energies[J]. Radiation Physics and Chemistry, 2015, 107: 199−206. doi: 10.1016/j.radphyschem.2014.11.002

    CrossRef Google Scholar

    [19] Hodoroaba V, Rackwitz V. Gaining improved chemical composition by exploitation of Compton-to-Rayleigh intensity ratio in XRF analysis[J]. Analytical Chemistry, 2014, 86(14): 6858−6864. doi: 10.1021/ac5000619

    CrossRef Google Scholar

    [20] Shen Y T, Luo L Q, Song Y F, et al. Matrix correction with Compton to Rayleigh ratio in a plant-soil-rock interface analysis using a laboratory micro-XRF[J]. X-Ray Spectrometry, 2019, 48(5): 536−542. doi: 10.1002/xrs.3080

    CrossRef Google Scholar

    [21] 马景治, 肖伟, 向兆, 等. 超细粉末压片-X射线荧光光谱法测定土壤和沉积物中21种主微量元素[J]. 分析试验室, 2025, 44(1): 29−35. doi: 10.13595/j.cnki.issn1000-0720.2023102505.

    CrossRef Google Scholar

    Ma J Z, Xiao W, Xiang Z, et al. Determination of major and trace elements in soil and sediment by X-ray fluorescence spectrometry with ultra-fine powder pressing[J]. Chinese Journal of Analysis Laboratory, 2025, 44(1): 29−35. doi: 10.13595/j.cnki.issn1000-0720.2023102505.

    CrossRef Google Scholar

    [22] 彭桦, 罗昆义, 张树洪, 等. 超细样品压片 X射线荧光光谱分析沙特阿拉伯磷矿中多元素含量[J]. 磷肥与复肥, 2018, 33(7): 39−42. doi: 10.3969/j.issn.1007-6220.2018.07.014

    CrossRef Google Scholar

    Peng H, Luo K Y, Zhang S H, et al. Analysis of multi-elements in phosphorus rock of Saudi Arabia by XRF ultra-fine sample squash method[J]. Phosphate & Compound Fertilizer, 2018, 33(7): 39−42. doi: 10.3969/j.issn.1007-6220.2018.07.014

    CrossRef Google Scholar

    [23] 曾江萍, 李小莉, 张莉娟, 等. 超细粉末压片 X射线荧光光谱法分析铬铁矿中的多种元素[J]. 矿物学报, 2015, 35(4): 545−549. doi: 10.16461/j.cnki.1000-4734.2015.04.020

    CrossRef Google Scholar

    Zeng J P, Li X L, Zhang L J, et al. Determination of multi-elements in chromite by X-ray fluorescence spectrometry with ultra-fine powder tabletting[J]. Acta Mineralogica Sinica, 2015, 35(4): 545−549. doi: 10.16461/j.cnki.1000-4734.2015.04.020

    CrossRef Google Scholar

    [24] 曾江萍, 张莉娟, 李小莉, 等. 超细粉末压片-X射线荧光光谱法测定磷矿石中 12 种组分[J]. 冶金分析, 2015, 35(7): 37−43. doi: 10.13228/j.boyuan.issn1000-7571.009526

    CrossRef Google Scholar

    Zeng J P, Zhang L J, Li X L, et al. Determination of twelve components in phosphate ore by X-ray fluorescence spectrometry with ultra-fine powder tabletting[J]. Metallurgical Analysis, 2015, 35(7): 37−43. doi: 10.13228/j.boyuan.issn1000-7571.009526

    CrossRef Google Scholar

    [25] 李小莉, 安树清, 徐铁民, 等. 超细粉末压片制样 X 射线荧光光谱测定碳酸岩样品中多种元素及 CO2[J]. 光谱学与光谱分析, 2015, 35(6): 1741−1745. doi: 10.3964/j.issn.1000-0593(2015)06-1741-05

    CrossRef Google Scholar

    Li X L, An S Q, Xu T M, et al. Ultra-fine pressed powder pellet sample preparation XRF determination of multi-elements and carbon dioxide in carbonate[J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1741−1745. doi: 10.3964/j.issn.1000-0593(2015)06-1741-05

    CrossRef Google Scholar

    [26] Gazulla M F, Gomez M P, Orduna M, et al. New methodology for sulfur analysis in geological samples by WD-XRF spectrometry[J]. X-Ray Spectrometry: An International Journal, 2009, 38(1): 3−8. doi: 10.1002/xrs.1092

    CrossRef Google Scholar

    [27] Li X L, Wang Y M, Zhang Q. Determination of halogen levels in marine geological samples[J]. Spectroscopy Letters, 2016, 49(3): 151−154. doi: 10.1080/00387010.2015.1109522

    CrossRef Google Scholar

    [28] Tiwari M, Sahu S K, Bhangare R C, et al. Depth profile of major and trace elements in estuarine core sediment using the EDXRF technique[J]. Applied Radiation and Isotopes, 2013, 80: 78−83. doi: 10.1016/j.apradiso.2013.06.002

    CrossRef Google Scholar

    [29] Obhođaš J, Valković V, Matjačić L, et al. Evaluation of elemental composition of sediments from the Adriatic Sea by using EDXRF technique[J]. Applied Radiation and Isotopes, 2012, 70(7): 1392−1395. doi: 10.1016/j.apradiso.2012.03.010

    CrossRef Google Scholar

    [30] Abderrahim H, Candela L, Queralt I, et al. X-ray fluorescence analysis for total bromine tracking in the vadose zone: Results for Mnsara, Morocco[J]. Vadose Zone Journal, 2011, 10(4): 1331−1335. doi: 10.2136/vzj2010.0150

    CrossRef Google Scholar

    [31] Pashkova G V, Aisueva T S, Finkelshtein A L, et al. Analytical approaches for determination of bromine in sediment core samples by X-ray fluorescence spectrometry[J]. Talanta, 2016, 160: 375−380.

    Google Scholar

    [32] Chubarov V M, Finkelshtein A L. Determination of divalent iron content in igneous rocks of ultrabasic, basic and intermediate compositions by a wavelength-dispersive X-ray fluorescence spectrometric method[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 107: 110. doi: 10.1016/j.sab.2015.03.007

    CrossRef Google Scholar

    [33] Chubarov V M, Suvorova D, Mukhetdinova A, et al. X-ray fluorescence determination of the manganese valence state and speciation in manganese ores[J]. X-Ray Spectrometry, 2015, 44(6): 436. doi: 10.1002/xrs.2619

    CrossRef Google Scholar

    [34] Medeiros C A D, Trebat N M. Transforming natural resources into industrial advantage: The case of China’s rare earths industry[J]. Brazilian Journal of Poultry Science, 2017, 37(3): 504−526. doi: 10.1590/0101-31572017v37n03a03

    CrossRef Google Scholar

    [35] Jyothi R K, Thenepalli T, Ahn J W, et al. Review of rare earth elements recovery from secondary resources for clean energy technologies: Grand opportunities to create wealth from waste[J]. Journal of Cleaner Production, 2020: 122048.

    Google Scholar

    [36] 钟坚海. 熔融制样-X射线荧光光谱法测定铝矿中 15 种组分[J]. 冶金分析, 2018, 38(11): 24−29. doi: 10.13228/j.boyuan.issn1000-7571.010399

    CrossRef Google Scholar

    Zhong J H. Determination of fifteen components in aluminum ore by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2018, 38(11): 24−29. doi: 10.13228/j.boyuan.issn1000-7571.010399

    CrossRef Google Scholar

    [37] 周伟, 曾梦, 王健, 等. 熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J]. 岩矿测试, 2018, 37(3): 298−305. doi: 10.15898/j.cnki.11-2131/td.201706280113

    CrossRef Google Scholar

    Zhou W, Zeng M, Wang J, et al. Determination of major and rare earth elements in rare earth ores by X-ray fluorescence spectrometry with fusion sample preparation[J]. Rock and Mineral Analysis, 2018, 37(3): 298−305. doi: 10.15898/j.cnki.11-2131/td.201706280113

    CrossRef Google Scholar

    [38] Silva C D, Santana G P, Paz S P A. Determination of La, Ce, Nd, Sm, and Gd in mineral waste from cassiterite beneficiation by wavelength-dispersive X-ray fluore-scence spectrometry[J]. Talanta, 2020, 206: 120254. doi: 10.1016/j.talanta.2019.120254

    CrossRef Google Scholar

    [39] Price J R, Heitmann N, Hull J, et al. Long-term average mineral weathering rates from watershed geochemical mass balance methods: Using mineral modal abundances to solve more equations in more unknowns[J]. Chemical Geology, 2008, 254(1−2): 36−51. doi: 10.1016/j.chemgeo.2008.05.012

    CrossRef Google Scholar

    [40] Nakayama K, Shibata Y, Nakamura T. Glass beads/X-ray fluorescence analyses of 42 components in felsic rocks[J]. X-Ray Spectrometry: An International Journal, 2007, 36(2): 130−140. doi: 10.1002/xrs.936

    CrossRef Google Scholar

    [41] Ichikawa S, Onuma H, Nakamura T. Development of undersized (12.5mm diameter) low-dilution glass beads for X-ray fluorescence determination of 34 components in 200mg of igneous rock for applications with geochemical and archeological silicic samples[J]. X-Ray Spectrometry, 2016, 45(1): 34−47. doi: 10.1002/xrs.2652

    CrossRef Google Scholar

    [42] Suvorova D, Khudonogova E, Revenko A. X-ray fluorescence determination of Cs, Ba, La, Ce, Nd, and Ta concentrations in rocks of various composition[J]. X-Ray Spectrometry, 2017, 46(3): 200−208. doi: 10.1002/xrs.2747

    CrossRef Google Scholar

    [43] Orescanin V, Mikelic L, Roje V, et al. Determination of lanthanides by source excited energy dispersive X-ray fluorescence (EDXRF) method after preconcentration with ammonium pyrrolidine dithiocarbamate (APDC)[J]. Analytica Chimica Acta, 2006, 570(2): 277−282. doi: 10.1016/j.aca.2006.04.028

    CrossRef Google Scholar

    [44] 袁静, 沈加林, 刘建坤, 等. 高能偏振能量色散X射线荧光光谱仪测定地质样品中稀土元素[J]. 光谱学与光谱分析, 2018, 38(2): 582−589. doi: 10.3964/j.issn.1000-0593(2018)02-0582-08

    CrossRef Google Scholar

    Yuan J, Shen J L, Liu J K, et al. Determination of rare earth elements in geological samples by high-energy polarized energy-dispersive X-ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2018, 38(2): 582−589. doi: 10.3964/j.issn.1000-0593(2018)02-0582-08

    CrossRef Google Scholar

    [45] Maritz H, Cloete H, Elsenbroek J H. Analysis of high density regional geochemical soil samples at the council for geoscience (South Africa): The importance of quality control measures[J]. Geostandards and Geoanalytical Research, 2010, 34(3): 265−273. doi: 10.1111/j.1751-908X.2010.00078.x

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(271) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint