2024 Vol. 40, No. 3
Article Contents

WANG Xiang-Fa, WAN Chuan-Hui, WANG Shuai-Jun, LIU Dong-Qin, WANG Juan, CUI Pei-Long, KANG Yu. 2024. Metallogenesis of Miaoya Nb-REE Deposit with Comparison to Typical Carbonatite-Alkaline Rock-Related Nb-REE Deposits in China. South China Geology, 40(3): 462-480. doi: 10.3969/j.issn.2097-0013.2024.03.003
Citation: WANG Xiang-Fa, WAN Chuan-Hui, WANG Shuai-Jun, LIU Dong-Qin, WANG Juan, CUI Pei-Long, KANG Yu. 2024. Metallogenesis of Miaoya Nb-REE Deposit with Comparison to Typical Carbonatite-Alkaline Rock-Related Nb-REE Deposits in China. South China Geology, 40(3): 462-480. doi: 10.3969/j.issn.2097-0013.2024.03.003

Metallogenesis of Miaoya Nb-REE Deposit with Comparison to Typical Carbonatite-Alkaline Rock-Related Nb-REE Deposits in China

More Information
  • REE and Nb are strategic and critical metals mainly sourced from carbonatite-alkaline rocks. Thus, it is of great scientific and economic significance for the research on metallogenic mechanism of Nb-REE deposits associated with carbonatite-alkaline rocks. In this paper, we have detailedly summarized the recent progress in Miaoya Nb-REE deposit from Hubei which is related with carbonatite-syenite complex, with respect to geological characteristics, chronology, genesis and metallogenic model. Meanwhile, the method of “comparative metallogeny” is used for its comparison with other typical Nb-REE deposits of the same type from China. Through systematic analysis, we point out that the difference in enriched component introduced into mantle source, the degree of magma evolution, and the intensity of post-magmatic hydrothermal fluid activity are the key factors controlling the mineralization differences of carbonatite-alkaline rock-related Nb-REE deposits. Due to the relatively low-intensity hydrothermal fluid activity, the REE grade of the Miaoya deposit is correspondingly low, leading to the low economic value of its rare earth resources. The rich niobium resources should be focused on with the development and utilization of the Miaoya deposit, which is expected to lower down the currently high external dependency on niobium for China and improve China’s niobium resource pattern.

  • 加载中
  • [1] 陈 彪,贾晓琪,魏 威,金海龙.2024.内蒙古白云鄂博矿床年代学特征及其地质意义[J]. 地质科技通报,43(1):63-73.

    Google Scholar

    [2] 陈 唯,应元灿,柳加俊,杨 帆,蒋少涌.2024.与碳酸岩-碱性岩有关的铌-稀土矿床成矿作用及成因机制[J]. 矿物岩石地球化学通报,43(1):1-14.

    Google Scholar

    [3] 陈 唯.2015.碳酸岩型铌矿床成矿作用[J]. 矿物学报,35(S1):276.

    Google Scholar

    [4] 邓 淼,韦春婉,许 成,石爱国,李卓骐,范朝熙,匡光喜.2022.白云鄂博超大型稀土矿床成因评述[J]. 地学前缘,29(1):14-28.

    Google Scholar

    [5] 高 成,康清清,江宏君,郑 惠,李 鹏,张熊猫,李 雷,董强强,叶兴超,胡小佳.2017.秦岭造山带发现新型铀多金属矿:华阳川与伟晶岩脉和碳酸岩脉有关的超大型铀-铌-铅-稀土矿床[J]. 地球化学,46(5):446-455. doi: 10.3969/j.issn.0379-1726.2017.05.004

    CrossRef Google Scholar

    [6] 何宏平,杨武斌.2022.我国稀土资源现状和评价[J]. 大地构造与成矿学,46(5):829-841.

    Google Scholar

    [7] 侯增谦,田世洪,谢玉玲,袁忠信,杨竹森,尹淑苹,费红彩,邹天人,李小渝,杨志明.2008.川西冕宁-德昌喜马拉雅期稀土元素成矿带:矿床地质特征与区域成矿模型[J]. 矿床地质,27(2):145-176. doi: 10.3969/j.issn.0258-7106.2008.02.002

    CrossRef Google Scholar

    [8] 胡 朋,刘国平,江思宏,莫江平.2023.全球稀土矿床的主要类型和成因研究进展[J]. 矿产勘查,14(5):691-700.

    Google Scholar

    [9] 黄增保,李葆华,董晓燕,傅太宇,许 龙,高昆丽,陈 晨,郑 慧,朱永新.2019.北祁连干沙鄂博稀土元素矿床地质和矿床地球化学特征[J]. 矿床地质,38(1):129-143.

    Google Scholar

    [10] 江 拓,邱啸飞,卢山松,张利国,杨红梅,彭练红. 2019. 扬子北缘早志留世大陆裂谷:来自南秦岭天宝铌矿双峰式火山岩的证据[A]. //中国矿物岩石地球化学学会第17届学术年会论文摘要集[C].

    Google Scholar

    [11] 蒋荣良.1989.内蒙阿右旗桃花拉山稀有稀土矿床地质特征及赋存规律[J]. 西北地质,(3):41-48.

    Google Scholar

    [12] 金婷婷,王秉璋,王 涛,李五福,刘建栋,袁博武,付长垒,李玉龙,张新远,韩晓龙,郑 英,曹锦山.2023.东昆仑大格勒富铌碳酸岩矿物学特征[J]. 大地构造与成矿学,47(6):1-15.

    Google Scholar

    [13] 赖绍聪,杨 航,张方毅.2024.南秦岭早古生代碱性岩地球化学特征及其成因机制:研究进展与展望[J]. 地质学报,98(3):799-828.

    Google Scholar

    [14] 李建康,白 鸽,袁忠信,应立娟,张 建.2008.富氟钡型碳酸岩岩浆的演化机制及其成矿效应[J]. 地质论评,54(6):793-800.

    Google Scholar

    [15] 李山坡,乔欣欣,陈俊魁,郑 凯,潘小娜,吴祥珂,张哨波,张荣臻,高传宝.2022.河南方城大庄铌-稀土矿床碱性正长岩成矿机理研究[J]. 中国地质,49(4):1224-1235.

    Google Scholar

    [16] 李 石.1980.湖北庙垭碳酸岩地球化学特征及岩石成因探讨[J]. 地球化学,(4):345-355.

    Google Scholar

    [17] 李五福,王 涛,王秉璋,张新远,谭运鸿,袁博武,王春涛,韩晓龙,金婷婷,郑 英,曹锦山,王泰山,张 焜,付长垒,陈 健,刘建栋,李 青,张启龙,陈丽娟.2024.东昆仑大格勒地区稀有和稀土矿化碱性杂岩体的发现及意义[J]. 大地构造与成矿学,48(1):38-49.

    Google Scholar

    [18] 刘 琰,舒小超.2021.碳酸岩型稀土矿床中的霓长岩化作用概述[J]. 矿物岩石地球化学通报,40(5):1025-1033+996-997.

    Google Scholar

    [19] 鲁显松,周 豹,孙 腾,朱 金,冷双梁,熊意林.2021.鄂西北地区碱性岩-碳酸岩及相关铌钽-稀土矿研究与勘查进展[J]. 资源环境与工程,35(3):279-284+312.

    Google Scholar

    [20] 马玉兴,朱惠民,顾同瑚,等. 1981. 湖北省竹山县庙垭铌、稀土矿区详查--初勘地质报告[DS]. 全国地质资料馆,DOI:10.35080/n01.c.67233.

    Google Scholar

    [21] 南 哲,王林世,侯 旭,翟征博,王 杨,刘 洋.2023.赛马碱性岩稀有稀土矿地质化学特征及找矿潜力[J]. 物探与化探,47(3):670-680.

    Google Scholar

    [22] 邱啸飞,蔡应雄,江 拓,卢山松,彭练红,赵小明,彭三国,朱 江.2017.庙垭铌-稀土矿床的热液蚀变作用:来自碳酸岩碳-氧同位素的制约[J]. 华南地质与矿产,33(3):275-281.

    Google Scholar

    [23] 沈莽庭,郭维民,徐 鸣,孙建东.2021.巴西铌钽矿典型矿床特征及其资源分布规律和找矿方向[J]. 矿床地质,40(3):603-624.

    Google Scholar

    [24] 石 林,解广轰,夏 斌.1998.地幔端元组分的微量元素地球化学研究综述[J]. 地质地球化学,(2):77-82.

    Google Scholar

    [25] 宋文磊,许 成,刘 琼,王林均,吴 敏,曾 亮.2012.火成碳酸岩的实验岩石学研究及对地球深部碳循环的意义[J]. 地质论评,58(4):726-744.

    Google Scholar

    [26] 苏建辉. 2023. 南秦岭早古生代碱性岩-碳酸岩岩浆作用及铌-稀土成矿机制[D]. 中国地质大学(武汉)博士学位论文.

    Google Scholar

    [27] 王登红,刘善宝,王成辉,于 扬,赵 芝,代鸿章.2023.我国三稀矿产找矿进展述评与新一轮找矿建议[J]. 中国地质调查,10(5):1-8.

    Google Scholar

    [28] 王汉辉,唐 利,杨勃畅,唐吉根,张彦生,郭 俊,冯嘉颖,盛渊明.2023.东秦岭黄水庵碳酸岩型Mo-REE矿床方解石地球化学特征和氟碳铈矿U-Th-Pb年龄及其意义[J]. 西北地质,56(1):48-62.

    Google Scholar

    [29] 王 珂,王连训,朱煜翔,马昌前,黄宏业.2024.湖北庙垭碳酸岩杂岩体中铌赋存状态及富集机制:矿物化学制约[J]. 地球科学,49(2):594-611.

    Google Scholar

    [30] 王瑞利.2022.豫西太平镇稀土矿床地质特征及成矿模式[J]. 现代矿业,38(8):41-44+56.

    Google Scholar

    [31] 王 涛,王秉璋,袁博武.2024.东昆仑大格勒地区碱性岩‒碳酸岩型铌矿勘查进展及找矿前景[J]. 大地构造与成矿学,48(1):50-60.

    Google Scholar

    [32] 韦春婉,许 成,付 伟,易泽邦,李卓骐,石爱国,范朝熙,匡光喜.2022.稀土元素在岩浆和水热系统的实验岩石学和地球化学研究进展[J]. 岩石学报,38(2):455-471.

    Google Scholar

    [33] 翁 强,牛贺才,杨武斌,李宁波,单 强.2022.川西碱性岩-碳酸岩型稀土矿床成矿模型[J]. 矿物岩石地球化学通报,41(3):465-473+464.

    Google Scholar

    [34] 吴 敏,许 成,王林均,宋文磊.2011.庙垭碳酸岩型稀土矿床成矿过程初探[J]. 矿物学报,31(3):478-484.

    Google Scholar

    [35] 谢玉玲,曲云伟,杨占峰,梁 培,钟日晨,王其伟,夏加明,李必成.2019.白云鄂博铁、铌、稀土矿床:研究进展、存在问题和新认识[J]. 矿床地质,38(5):983-1003.

    Google Scholar

    [36] 谢玉玲,夏加明,崔 凯,曲云伟,梁 培,钟日晨.2020.中国碳酸岩型稀土矿床:时空分布与成矿过程[J]. 科学通报,65(33):3794-3808.

    Google Scholar

    [37] 杨 成,刘成新,刘万亮,万 俊,段先锋,张 众.2017.南秦岭竹溪县天宝乡粗面岩地球化学特征与铌成矿[J]. 岩石矿物学杂志,36(5):605-618.

    Google Scholar

    [38] 杨道明,潘荣昊,王 萌,侯 通.2022.成矿碳酸岩的实验岩石学研究现状与展望[J]. 地学前缘,29(1):54-64.

    Google Scholar

    [39] 尹淑苹,谢玉玲,侯增谦,曲云伟.2024.碳酸岩研究进展[J]. 岩石学报,40(3):1003-1022.

    Google Scholar

    [40] 袁忠信,李建康,王登红,郑国栋,娄德波,陈郑辉,赵 芝,于 扬. 2012. 中国稀土矿床成矿规律[M]. 北京:地质出版社.

    Google Scholar

    [41] 张宗清,唐索寒,王进辉,袁忠信,白 鸽.2001.白云鄂博矿床白云岩的Sm-Nd、Rb-Sr同位素体系[J]. 岩石学报,(4):637-642.

    Google Scholar

    [42] 朱 江,程昌红,王连训,彭三国,彭练红,许 珂.2017.南秦岭竹山地区早古生代碱性岩浆活动及其相关铌稀土成矿的若干认识[J]. 岩石矿物学杂志,36(5):681-690.

    Google Scholar

    [43] 邹天人,徐 珏,陈伟十,夏凤荣.2002.塔里木盆地北缘碱性岩型稀有稀土矿床[J]. 矿床地质,21(S1):845-848.

    Google Scholar

    [44] Anenburg M, Broom-Fendley S, Chen W. 2021. Formation of rare earth deposits in carbonatites[J]. Elements, 17(5): 327-332.

    Google Scholar

    [45] Bell K, Tilton G R. 2001. Nd, Pb and Sr isotopic compositions of East African carbonatites: Evidence for mantle mixing and plume inhomogeneity[J]. Journal of Petrology, 42(10): 1927-1945.

    Google Scholar

    [46] Berndt J, Klemme S. 2022. Origin of carbonatites-liquid immiscibility caught in the act[J]. Nature Communications, 13: 2892.

    Google Scholar

    [47] Chen W, Lu J, Jiang S Y, Ying Y C, Liu Y S. 2018. Radiogenic Pb reservoir contributes to the rare earth element (REE) enrichment in South Qinling carbonatites[J]. Chemical Geology, 494: 80-95.

    Google Scholar

    [48] Dalton J A, Presnall D C. 1998. Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa[J]. Contributions to Mineralogy and Petrology, 131(2-3): 123-135.

    Google Scholar

    [49] Fan H R, Hu F F, Yang K F, Wang K Y. 2006. Fluid unmixing/immiscibility as an ore-forming process in the giant REE-Nb-Fe deposit, Inner Mongolian, China: evidence from fluid inclusions[J]. Journal of Geochemical Exploration, 89: 104-107.

    Google Scholar

    [50] Fan H R, Yang K F, Hu F F, Liu S, Wang K Y. 2016. The giant Bayan Obo REE-Nb-Fe deposit, China: Controversy and ore genesis[J]. Geoscience Frontiers, 7(3): 335-344.

    Google Scholar

    [51] Foley S F, Yaxley G M, Rosenthal A, Buhre S, Kiseeva E S, Rapp R P, Jacob D E. 2009. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar[J]. Lithos, 112: 274-283.

    Google Scholar

    [52] Gervasoni F, Klemme S, Rohrbach A, Grützner T, Berndt J. 2017. Experimental constraints on the stability of baddeleyite and zircon in carbonate- and silicate-carbonate melts[J]. American Mineralogist, 102(4): 860-866.

    Google Scholar

    [53] Hart S R, Hauri E H, Oschmann L A, Whitehead J A. 1992. Mantle plumes and entrainment: isotopic evidence[J]. Science, 256: 517-520.

    Google Scholar

    [54] Hou Z Q, Liu Y, Tian S H, Yang Z M, Xie Y L. 2015. Formation of carbonatite related giant rare-earth-element deposits by the recycling of marine sediments[J]. Scientific Reports, 5: 10231.

    Google Scholar

    [55] Kessel R, Schmidt M, Ulmer P, Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth[J]. Nature, 437: 724-727.

    Google Scholar

    [56] Kjarsgaard B A. 1998. Phase relations of a carbonated high CaO nephelinite at 0.2 and 0.5 GPa[J]. Journal of Petrology, 39(11-12): 2061-2075.

    Google Scholar

    [57] Liu Y, Hou Z Q. 2017. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China[J]. Journal of Asian Earth Sciences, 137: 35-79.

    Google Scholar

    [58] Ma R L, Chen W T, Zhang W, Chen Y W. 2021. Hydrothermal upgrading as an important tool for the REE mineralization in the Miaoya carbonatite-syenite complex, Central China[J]. American Mineralogist, 106: 1690-1703.

    Google Scholar

    [59] Mariano A N. 1989. Carbonatites: genesis and evolution: Nature of economic mineralization in carbonatites and related rocks[M]. London: Unwin Hyman, Bell K.

    Google Scholar

    [60] Migdisov A, Williams-Jones A E, Brugger J, Caporuscio F A. 2016. Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations[J]. Chemical Geology, 439: 13-42.

    Google Scholar

    [61] Pintér Z, Foley S F, Yaxley G M, Rosenthal A, Rapp R P, Lanati A W, Rushmer T. 2021. Experimental investigation of the composition of incipient melts in upper mantle peridotites in the presence of CO2 and H2O[J]. Lithos, 396-397: 106224.

    Google Scholar

    [62] Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 145: 325-394.

    Google Scholar

    [63] Smith M P, Moore K, Kavecsanszki D, Finch A A, Kynicky J, Wall F. 2016. From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements[J]. Geoscience Frontiers, 7: 315-334.

    Google Scholar

    [64] Su J H, Zhao X F, Li X C, Hu W, Chen M, Xiong Y L. 2019. Geological and geochemical characteristics of the Miaoya syenite-carbonatite complex, Central China: Implications for the origin of REE-Nb-enriched carbonatite[J]. Ore Geology Reviews, 113: 103101.

    Google Scholar

    [65] Su J H, Zhao X F, Li X C, Hu W, Chen W, Slezak P. 2022. Unmixing of REE-Nb enriched carbonatites after incremental fractionation of alkaline magmas in the Shaxiongdong complex, Central China[J]. Lithos, 416-417: 106651.

    Google Scholar

    [66] Su J H, Zhao X F, Li X C, Su Z K, Liu R, Qin Z J, Chen M. 2021. Fingerprinting REE mineralization and hydrothermal remobilization history of the carbonatite alkaline complexes, Central China: Constraints from in situ elemental and isotopic analyses of phosphate minerals[J]. American Mineralogist, 106: 1545-1558.

    Google Scholar

    [67] Wallace M E, Green D H. 1988. An experimental determination of primary carbonatite magma composition[J]. Nature, 335: 343-346.

    Google Scholar

    [68] Weidendorfer D, Schmidt M W, Mattsson H B. 2016. Fractional crystallization of Si undersaturated alkaline magmas leading to unmixing of carbonatites on Brava Island (Cape Verde) and a general model of carbonatite genesis in alkaline magma suites[J]. Contributions to Mineralogy and Petrology, 171: 43.

    Google Scholar

    [69] Wu B, Hu Y Q, Bonnetti C, Xu C, Wang R C, Zhang Z S. 2021. Hydrothermal alteration of pyrochlore group minerals from the Miaoya carbonatite complex, central China and its implications for Nb mineralization[J]. Ore Geology Reviews, 132: 104059.

    Google Scholar

    [70] Wu H H, Huang H, Zhang Z C, Wang T, Guo L, Gao Y B, Zhang Z. 2023. Highly differentiated trachytic magma linked with rare metal mineralization: a case study from the Shuanghekou Nb deposit South Qinling[J]. Lithos, 438: 106990.

    Google Scholar

    [71] Xia Y H, Lai S C, Yang H, Zhu Y, Qin J F, Zhu R Z, Liu M, Zhang F Y, Zhong Z H. 2024. Liquid immiscibility acting on the formation of the Miaoya carbonatite-syenite complex in the South Qinling Belt, Central China[J]. Journal of Asian Earth Sciences, 264: 106072.

    Google Scholar

    [72] Xie Y L, Hou Z Q, Yin S B, Dominy S C, Xu J H, Tian S H, Xu W Y. 2009. Continuous carbonatitic melt-fluid evolution of a REE mineralization system: Evidence from inclusions in the Maoniuping REE deposit, western Sichuan, China[J]. Ore Geology Reviews, 36: 90-105.

    Google Scholar

    [73] Xu C, Campbell I H, Kynicky J, Alle C M, Chen Y J, Huang Z L, Qi L. 2008. Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo REE deposit, China[J]. Lithos, 106(1-2): 12-24.

    Google Scholar

    [74] Xu C, Chakhmouradian A R, Kynický J, Li Y X, Song W L, Chen W. 2019. A Paleoproterozoic mantle source modified by subducted sediments under the North China craton[J]. Geochimica et Cosmochimica Acta, 245: 222-239.

    Google Scholar

    [75] Xu C, Chakhmouradian A R, Taylor R N, Kynicky J, Li W B, Song W L, Fletcher I R. 2014. Origin of carbonatites in the South Qinling orogen: Implications for crustal recycling and timing of collision between the South and North China Blocks[J]. Geochimica et Cosmochimica Acta, 143: 189-206.

    Google Scholar

    [76] Xu C, Kynicky J, Chakhmouradian A N, Campbell I H, Allen C M. 2010. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, central China[J]. Lithos, 118: 145-155.

    Google Scholar

    [77] Yang K F, Fan H R, Pirajno F, Li X C. 2019. The Bayan Obo (China) giant REE accumulation conundrum elucidated by intense magmatic differentiation of carbonatite[J]. Geology, 47: 1198-1202.

    Google Scholar

    [78] Yang K F, Fan H R, Santosh M, Hu F F, Wang K Y. 2011. Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: constraints for the mechanism of super accumulation of rare earth elements[J]. Ore Geology Reviews, 40: 122-131.

    Google Scholar

    [79] Yang W B, Niu H C, Li N B, Hollings P, Zurevinski S, Xing C M. 2020. Enrichment of REE and HFSE during the magmatic-hydrothermal evolution of the Baerzhe alkaline granite, NE China: Implications for rare metal mineralization[J]. Lithos, 358-359: 105411.

    Google Scholar

    [80] Ying Y C, Chen W, Lu J, Jiang S Y, Yang Y H. 2017. In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China[J]. Lithos, 290-291: 159-171.

    Google Scholar

    [81] Ying Y C, Chen W, Simonetti A, Jiang S Y, Zhao K D. 2020. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China)[J]. Geochimica et Cosmochimica Acta, 280: 340-359.

    Google Scholar

    [82] Ying Y C, Chen W, Chakhmouradian A R, Zhao K D, Jiang S Y. 2023. Textural and compositional evolution of niobium minerals in the Miaoya carbonatite-hosted REE-Nb deposit from the South Qinling Orogen of central China[J]. Mineralium Deposita, 58: 197-220.

    Google Scholar

    [83] Zhang D X, Liu Y, Pan J Q, Dai T G, Bayless R C. 2019. Mineralogical and geochemical characteristics of the Miaoya REE prospect, Qinling orogenic Belt, China: Insights from Sr-Nd-C-O isotopes and LA-ICP-MS mineral chemistry[J]. Ore Geology Reviews, 110: 102932.

    Google Scholar

    [84] Zhang W, Chen W T, Gao J, Chen H, Li J. 2019. Two episodes of REE mineralization in the Qinling Orogenic Belt, Central China: in-situ U-Th-Pb dating of bastnäsite and monazite[J]. Mineralium Deposita, 54(8): 1265-1280.

    Google Scholar

    [85] Zhao X C, Yan S, Niu H C, Zhang Q B, Zhao X, Wu J, Yang W B. 2021. Isotopic fingerprints of recycled eclogite facies sediments in the generation of the Huanglongpu carbonatite, central China[J]. Ore Geology Reviews, 139(5): 104534.

    Google Scholar

    [86] Zhu J, Wang L X, Peng S G, Peng L H , Wu C X, Qiu X F. 2017. U-Pb zircon age, geochemical and isotopic characteristics of the Miaoya syenite and carbonatite complex, central China[J]. Geological Journal, 52: 938-954.

    Google Scholar

    [87] Zhu X X, Liu Y, Hou Z Q. 2023. Massive rare earth element storage in sub-continental lithospheric mantle initiated by diapirism, not by melting[J]. Geology, 52(2): 105-109.

    Google Scholar

    [88] Zindler A S H. 1986. Chemical Geodynamics[J]. Annual Review of Earth and Planetary Sciences, 14(1): 493-571.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(203) PDF downloads(17) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint