Citation: | WU Zhen-Yu, LIU Yan. 2024. Research Progress on Petrogenesis and Niobium-Tantalum Mineralization of Permian Alkaline Rocks in the Panxi Region. South China Geology, 40(3): 445-461. doi: 10.3969/j.issn.2097-0013.2024.03.002 |
Niobium (Nb) and tantalum (Ta) elements are significantly strategic key metal resources. Alkaline rocks have attracted considerable attention due to their enrichment of rare earth elements. In recent years, significant research progress has been made in Permian peralkaline-metaaluminous-peraluminous syenite and granite as well as associated niobium-tantalum deposits developed in the Panxi region, Emeishan Igneous Province, focusing on their geochronology and metallogenic ages, geochemical characteristics, petrogenesis, and Nb-Ta enrichment mechanisms. In the axis of the mantle plume, the Emeishan high-Ti basalt magma, formed by partial melted mantle peridotite, created small-scale A-type granite and alkalic- metaaluminous syenite in the magma chamber through fractional crystallization and liquid immiscibility. The underplating mantle-derived magma convection provided significant heat energy for the partial melting of basic gabbro, leading to the formation of widely distributed peralkaline-metaluminous syenite and granite. Simultaneously, peraluminous granite was formed when a small proportion of the juvenile crust or the Yangtze basement is involved in the process of partial melting. The research shows that the enrichment process of Nb-Ta is controlled by both magma crystallization differentiation and hydrothermal metasomatism. The alkaline magma from the mantle preferentially crystallizes plagioclase, amphibole, apatite, and other minerals through crystallization differentiation, leading to the initial enrichment of Nb and Ta elements in the syenite. The F-Na rich hydrothermal fluid from the syenite acts on rock by metasomatism , which results in alteration such as albitization, aegirinization, and fluorization. The early magmatic niobium-tantalum minerals were decomposed due to metasomatism, with the Nb and Ta elements being reactivated, migrated, and precipitated to form hydrothermal pyrochlore and titanite.
[1] | 陈 唯,应元灿,柳加俊,杨 帆,蒋少涌.2024.与碳酸岩-碱性岩有关的铌-稀土矿床成矿作用及成因机制[J]. 矿物岩石地球化学通报,43(1):1-14. |
[2] | 何海洋,何 敏,李建武.2018.我国铌矿资源供需形势分析[J]. 中国矿业,27(11):1-5. |
[3] | 贺金良.2004.四川攀西地区铌钽矿床成矿地质条件及找矿前景[J]. 四川地质学报,24(4):206-211. |
[4] | 胡瑞忠,陶 琰,钟 宏,黄智龙,张正伟.2005.地幔柱成矿系统:以峨眉山地幔柱为例[J]. 地学前缘,12(1):42-54. |
[5] | 季 浩,李艳军,李一鸣,冷双梁,杨紫文.2024.碱性花岗岩型稀有稀土矿床类型及成矿作用研究进展[J]. 地质科技通报,43(1):23-38. |
[6] | 蒋少涌.2000.硼同位素及其地质应用研究[J]. 高校地质学报,6(1):1-16. |
[7] | 李华芹,王登红,张利国,任海涛,王晓地,贾小辉,杨文强.2017.四川攀西红格矿区辉长岩和正长岩的SHRIMP U-Pb和Sm-Nd定年及其地质意义[J]. 地质通报,36(5):698-705. |
[8] | 李建康,李 鹏,王登红,李兴杰.2019.中国铌钽矿成矿规律[J]. 科学通报,64(15):1545-1566. |
[9] | 李素欣,钟 宏,柏中杰,朱维光.2023.攀西碱性岩型Nb-Zr-REE矿床的矿物学与地球化学研究[J]. 矿物学报,43(5):627-639. |
[10] | 李献华,李武显,王选策,李秋立,刘 宇,唐国强.2009.幔源岩浆在南岭燕山早期花岗岩形成中的作用:锆石原位Hf-O同位素制约[J]. 中国科学(D辑:地球科学),39(7):872-887. |
[11] | 刘肇昌. 1996. 扬子地台西缘构造演化与成矿[M]. 成都:电子科技大学出版社. |
[12] | 罗震宇,徐义刚,何 斌,石玉若,黄小龙.2006.论攀西猫猫沟霞石正长岩与峨眉山大火成岩省的成因联系:年代学和岩石地球化学证据[J]. 科学通报,51(15):1802-1810. |
[13] | 秦江锋,赖绍聪,张泽中,郑国顺.2021.峨眉山大火成岩省内带中酸性岩浆岩对地幔柱岩浆过程及地壳熔融机制的启示[J]. 西北大学学报(自然科学版),51(6):1031-1041. |
[14] | 四川省地质矿产局. 1991. 四川省区域地质志[M]. 北京:地质出版社. |
[15] | 苏 立. 2018. 白云鄂博西矿铌富集机制及成矿相关性研究 [D]. 中国矿业大学(北京)博士学位论文. |
[16] | 陶 琰,李玉帮,廖名扬,熊 风.2014.四川攀西炉库铌钽矿床成因分析[J]. 矿床地质,33(S1):1189-1190. |
[17] | 王汾连. 2014. 攀西地区二叠纪铌钽矿的成因研究:以炉库和白草矿区为例 [D]. 中国科学院大学博士学位论文. |
[18] | 王汾连,赵太平,陈 伟,王 焰.2013.峨眉山大火成岩省赋Nb-Ta-Zr矿化正长岩脉的形成时代和锆石Hf同位素组成[J]. 岩石学报,29(10):3519-3532. |
[19] | 王汾连,赵太平,陈 伟.2012.铌钽矿研究进展和攀西地区铌钽矿成因初探[J]. 矿床地质,31(2):293-308. |
[20] | 王汝成,车旭东,邬 斌,谢 磊.2020.中国铌钽锆铪资源[J]. 科学通报,65(33):3763-3777. |
[21] | 王 焰,王 坤,邢长明,魏 博,董 欢,曹永华.2017.二叠纪峨眉山地幔柱岩浆成矿作用的多样性[J]. 矿物岩石地球化学通报,36(3):404-417. |
[22] | 吴鸣谦. 2017. 江西宜春(四一四)和大吉山矿床的矿物学、地球化学及成矿作用研究 [D]. 中国地质大学(北京)博士学位论文. |
[23] | 吴镇宇. 2024. 攀西地区二叠纪碱性正长岩成因机制及铌钽成矿 [D]. 中国地质科学院硕士学位论文. |
[24] | 徐义刚,何 斌,罗震宇,刘海泉.2013.我国大火成岩省和地幔柱研究进展与展望[J]. 矿物岩石地球化学通报,32(1):25-39. |
[25] | 徐义刚,钟玉婷,位 荀,陈 军,刘海泉,颉 炜,罗震宇,李洪颜,何 斌,黄小龙,王 焰,陈 赟.2017.二叠纪地幔柱与地表系统演变[J]. 矿物岩石地球化学通报,36(3):359-373+358. |
[26] | 杨 成,刘成新,刘万亮,万 俊,段先锋,张 众.2017.南秦岭竹溪县天宝乡粗面岩地球化学特征与铌成矿[J]. 岩石矿物学杂志,36(5):605-618. |
[27] | 杨铸生,段惠敏,王秀京.2007.四川攀西地区铌钽矿床的地质特征及找矿方向[J]. 四川地质学报,27(4):248-254. |
[28] | 姚春彦,王天刚,倪 培,姚仲友,郭维民,朱意萍,王 威.2021.铌钽矿床类型、特征与研究进展[J]. 中国地质,48(6):1748-1758. |
[29] | 尹福光,孙志明,万 方. 2007. 扬子陆块西缘构造演化及其资源效应[M]. 北京:地质出版社. |
[30] | 张 东,杨武斌,牛贺才.2024.钠交代作用对碱性花岗岩体系中稀土富集成矿的贡献[J]. 岩石学报,40(3):864-872. |
[31] | 张云湘,袁学诚. 1988. 中国攀西裂谷文集3[M]. 北京:地质出版社. |
[32] | 张泽中. 2019. 攀西米易地区晚二叠世碱性岩成因机制及地质意义 [D]. 西北大学硕士学位论文. |
[33] | 张招崇,王福生,范蔚茗,邓海琳,徐义刚,许继峰,王岳军.2001.峨眉山玄武岩研究中的一些问题的讨论[J]. 岩石矿物学杂志,20(3):239-246. |
[34] | 朱煜翔. 2019. 东秦岭新元古代方城碱性杂岩体的成因及Nb-Ta富集机制 [D]. 中国地质大学(武汉)硕士学位论文. |
[35] | 自然资源部信息中心. 2023. 2022年全国矿产资源储量统计表[Z]. 中华人民共和国自然资源部. |
[36] | Aseri A A, Linnen R L, Che X D, Thibault Y, Holtz F. 2015. Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts[J]. Ore Geology Reviews, 64: 736-746. doi: 10.1016/j.oregeorev.2014.02.014 |
[37] | Ballouard C, Massuyeau M, Elburg M A, Tappe S, Viljoen F, Brandenburg J T. 2020. The magmatic and magmatic-hydrothermal evolution of felsic igneous rocks as seen through Nb-Ta geochemical fractionation, with implications for the origins of rare-metal mineralizations[J]. Earth-Science Reviews, 203: 103115. doi: 10.1016/j.earscirev.2020.103115 |
[38] | Charlier B, Grove T L. 2012. Experiments on liquid immiscibility along tholeiitic liquid lines of descent[J]. Contributions to Mineralogy and Petrology, 164(1): 27-44. doi: 10.1007/s00410-012-0723-y |
[39] | Chen J F, Jahn B M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence[J]. Tectonophysics, 284(1-2): 101-133. doi: 10.1016/S0040-1951(97)00186-8 |
[40] | Fan W M, Zhang C H, Wang Y J, Guo F, Peng T P. 2008. Geochronology and geochemistry of Permian basalts in western Guangxi Province, Southwest China: Evidence for plume-lithosphere interaction[J]. Lithos, 102(1-2): 218-236. doi: 10.1016/j.lithos.2007.09.019 |
[41] | Giovannini A L, Bastos Neto A C, Porto C G, Pereira V P, Takehara L, Barbanson L, Bastos P H S. 2017. Mineralogy and geochemistry of laterites from the Morro dos Seis Lagos Nb (Ti, REE) deposit (Amazonas, Brazil)[J]. Ore Geology Reviews, 88: 461-480. doi: 10.1016/j.oregeorev.2017.05.008 |
[42] | Gulley A L, Nassar N T, Xun S. 2018. China, the United States, and competition for resources that enable emerging technologies[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(16): 4111-4115. |
[43] | Keays R R. 1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits[J]. Lithos, 34(1-3): 1-18. doi: 10.1016/0024-4937(95)90003-9 |
[44] | Linnen R, Trueman D L, Burt R. 2014. Tantalum and niobium. //In: Gunn G(Ed. ). Critical Metals Handbook[M]. Wiley: 361-384. |
[45] | Lo C H, Chung S L, Lee T Y, Wu G Y. 2002. Age of the Emeishan flood magmatism and relations to Permian–Triassic boundary events[J]. Earth and Planetary Science Letters, 198(3-4): 449-458. doi: 10.1016/S0012-821X(02)00535-6 |
[46] | Lu P F, Liu P P. 2023. Constraints of combined Sr-Nd-Pb-Hf-O isotopic systematics on the petrogenesis of peralkaline, metaluminous and peraluminous granitoids in the Permian Emeishan large igneous province, SW China[J]. Chemical Geology, 624: 121423. doi: 10.1016/j.chemgeo.2023.121423 |
[47] | Luo Z Y, Xu Y G, He B, Shi Y R, Huang X L. 2007. Geochronologic and petrochemical evidence for the genetic link between the Maomaogou nepheline syenites and the Emeishan large igneous province[J]. Chinese Science Bulletin, 52(7): 949-958. doi: 10.1007/s11434-007-0112-5 |
[48] | Ma D Z, Liu Y. 2023. Nb mineralization in the nepheline syenite in the Saima area of the North China Craton, China[J]. Ore Geology Reviews, 152: 105247. doi: 10.1016/j.oregeorev.2022.105247 |
[49] | Mitchell R H. 2015. Primary and secondary niobium mineral deposits associated with carbonatites[J]. Ore Geology Reviews, 64: 626-641. doi: 10.1016/j.oregeorev.2014.03.010 |
[50] | Palme H, O’Neill H S C. 2014. Cosmochemical Estimates of Mantle Composition[J]. Treatise on Geochemistry, 3: 1-39. |
[51] | Palmieri M, Brod J A, Cordeiro P, Gaspar J C, Barbosa P A R, de Assis L C, Junqueira-Brod T C, Silva S E E, Milanezi B P, Machado S A, Jácomo M H. 2022. The Carbonatite-Related Morro do Padre Niobium Deposit, Cataldo II Complex, Central Brazil[J]. Economic Geology, 117(7): 1497-1520. doi: 10.5382/econgeo.4951 |
[52] | Pang K N, Zhou M F, Lindsley D, Zhao D G, Malpas J. 2008. Origin of Fe-Ti Oxide Ores in Mafic Intrusions: Evidence from the Panzhihua Intrusion, SW China[J]. Journal of Petrology, 49(2): 295-313. |
[53] | Peccerillo A, Barberio M R, Yirgu G, Ayalew D, Barbieri M, Wu T W. 2003. Relationships between Mafic and Peralkaline Silicic Magmatism in Continental Rift Settings: a Petrological, Geochemical and Isotopic Study of the Gedemsa Volcano, Central Ethiopian Rift[J]. Journal of Petrology, 44(11): 2003-2032. doi: 10.1093/petrology/egg068 |
[54] | Rudnick R L, Gao S. 2014. 4.1-Composition of the Continental Crust. //Holland H D, Turekian K K (eds.). Treatise on Geochemistry(Second Edition)[M] :1-51. Oxford: Elsevier. |
[55] | Shellnutt J G, Denyszyn S W, Mundil R. 2012. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China)[J]. Gondwana Research, 22(1): 118-126. doi: 10.1016/j.gr.2011.10.009 |
[56] | Shellnutt J G, Jahn B M, Zhou M F. 2011. Crustally-derived granites in the Panzhihua region, SW China: Implications for felsic magmatism in the Emeishan large igneous province[J]. Lithos, 123(1-4): 145-157. doi: 10.1016/j.lithos.2010.10.016 |
[57] | Shellnutt J G, Zhou M F, Yan D P, Wang Y B. 2008. Longevity of the Permian Emeishan mantle plume (SW China): 1 Ma, 8 Ma or 18 Ma?[J]. Geological Magazine, 145(3): 373-388. doi: 10.1017/S0016756808004524 |
[58] | Shellnutt J G, Zhou M F, Zellmer G F. 2009. The role of Fe-Ti oxide crystallization in the formation of A-type granitoids with implications for the Daly gap: An example from the Permian Baima igneous complex, SW China[J]. Chemical Geology, 259(3-3): 204-217. |
[59] | Shellnutt J G, Zhou M F. 2007. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume[J]. Chemical Geology, 243(3-4): 286-316. doi: 10.1016/j.chemgeo.2007.05.022 |
[60] | Shellnutt J G, Zhou M F. 2008. Permian, rifting related fayalite syenite in the Panxi region, SW China[J]. Lithos, 101(1-2): 54-73. doi: 10.1016/j.lithos.2007.07.007 |
[61] | Shellnutt J G. 2014. The Emeishan large igneous province: A synthesis[J]. Geoscience Frontiers, 5(3): 369-394. doi: 10.1016/j.gsf.2013.07.003 |
[62] | Stepanov A, Mavrogenes J A, Meffre S, Davidson P. 2014. The key role of mica during igneous concentration of tantalum[J]. Contributions to Mineralogy and Petrology, 167(6): 1-8. |
[63] | Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42: 313 - 345. |
[64] | Timofeev A, Williams-Jones A E. 2015. The Origin of Niobium and Tantalum Mineralization in the Nechalacho REE Deposit, NWT, Canada[J]. Economic Geology, 110(7): 1719-1735. doi: 10.2113/econgeo.110.7.1719 |
[65] | Valley J W. 2003. Oxygen Isotopes in Zircon[J]. Reviews in Mineralogy and Geochemistry, 53(1): 343-385. doi: 10.2113/0530343 |
[66] | Wang F L, Wang C Y, Zhao T P. 2015. Boron isotopic constraints on the Nb and Ta mineralization of the syenitic dikes in the ~260 Ma Emeishan large igneous province (SW China)[J]. Ore Geology Reviews, 65: 1110-1126. doi: 10.1016/j.oregeorev.2014.09.009 |
[67] | Wu B, Hu Y Q, Bonnetti C, Xu C, Wang R C, Zhang Z S, Li Z Y, Yin R. 2021. Hydrothermal alteration of pyrochlore group minerals from the Miaoya carbonatite complex, central China and its implications for Nb mineralization[J]. Ore Geology Reviews, 132: 104059. doi: 10.1016/j.oregeorev.2021.104059 |
[68] | Xiao L, Xu Y G, Mei H J, Zheng Y F, He B, Pirajno F. 2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: implications for plume-lithosphere interaction[J]. Earth and Planetary Science Letters, 228(3-4): 525-546. doi: 10.1016/j.jpgl.2004.10.002 |
[69] | Xu C, Kynicky J, Chakhmouradian A R, Campbell I H, Allen C M. 2010. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China[J]. Lithos, 118(1-2): 145-155. doi: 10.1016/j.lithos.2010.04.003 |
[70] | Xu G W, Zhu W G, Chen L, Zhong H, Wang Y J, Bai Z J, Yao J H, Hu P C. 2022. Ancient crust-derived syenitic and A-type granitic intrusions in the Emeishan large igneous province, SW China[J]. Lithos, 430-431: 106844. |
[71] | Xu J, Xia X P, Wang Q, Spencer C J, He B, Lai C K. 2021. Low-δ18O A-type granites in SW China: Evidence for the interaction between the subducted Paleotethyan slab and the Emeishan mantle plume[J]. Bulletin of the Geological Society of America Bulletin, 134(1-2): 81-93. |
[72] | Xu Y G, Luo Z Y, Huang X L, He B, Xiao L, Xie L W, Shi Y R. 2008. Zircon U-Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume[J]. Geochimica et Cosmochimica Acta, 72(13): 3084-3104. doi: 10.1016/j.gca.2008.04.019 |
[73] | Ying Y C, Chen W, Chakhmouradian A R, Zhao K D, Jiang S Y. 2023. Textural and compositional evolution of niobium minerals in the Miaoya carbonatite-hosted REE-Nb deposit from the South Qinling Orogen of central China[J]. Mineralium Deposita, 58(1): 197-220. doi: 10.1007/s00126-022-01126-y |
[74] | Ying Y C, Chen W, Simonetti A, Jiang S Y, Zhao K D. 2020. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China)[J]. Geochimica et Cosmochimica Acta, 280: 340-359. doi: 10.1016/j.gca.2020.04.028 |
[75] | Yong T, Linnen R L, McNeil A G. 2023. An Experimental Study of Pyrochlore Solubility in Peralkaline Granitic Melts[J]. Economic Geology, 118(1): 209-223. doi: 10.5382/econgeo.4958 |
[76] | Zeng Z Y, Liu Y. 2022. Magmatic-hydrothermal zircons in syenite: A record of Nb-Ta mineralization processes in the Emeishan large igneous province, SW China[J]. Chemical Geology, 589: 120675. doi: 10.1016/j.chemgeo.2021.120675 |
[77] | Zhang Z Z, Qin J F, Lai S C, Long X P, Ju Y J, Wang X Y, Zhu Y, Zhang F Y. 2019. Origin of Late Permian syenite and gabbro from the Panxi rift, SW China: The fractionation process of mafic magma in the inner zone of the Emeishan mantle plume[J]. Lithos, 346: 105160. |
[78] | Zhang Z Z, Qin J F, Lai S C, Long X P, Ju Y J, Wang X Y, Zhu Y, Zhang F Y. 2021. High-temperature melting of different crustal levels in the inner zone of the Emeishan large igneous province: Constraints from the Permian ferrosyenite and granite from the Panxi region[J]. Lithos, 402-403: 105979. doi: 10.1016/j.lithos.2021.105979 |
[79] | Zhang Z Z, Qin J F, Lai S C, Long X P, Ju Y J, Wang X Y, Zhu Y. 2020. Origin of Late Permian amphibole syenite from the Panxi area, SW China: high degree fractional crystallization of basaltic magma in the inner zone of the Emeishan mantle plume[J]. International Geology Review, 62(2): 210-224. doi: 10.1080/00206814.2019.1596844 |
[80] | Zhang Z C, Zhi X C, Chen L, Saunders A D, Reichow M K. 2008. Re-Os isotopic compositions of picrites from the Emeishan flood basalt province, China[J]. Earth and Planetary Science Letters, 276(1-2): 30-39. doi: 10.1016/j.jpgl.2008.09.005 |
[81] | Zhong H, Campbell I H, Zhu W G, Allen C M, Hu R Z, Xie L W, He D F. 2011. Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province[J]. Geochimica et Cosmochimica Acta, 75(5): 1374-1395. doi: 10.1016/j.gca.2010.12.016 |
[82] | Zhong H, Zhu W G, Chu Z Y, He D F, Song X Y. 2007. Shrimp U-Pb zircon geochronology, geochemistry, and Nd-Sr isotopic study of contrasting granites in the Emeishan large igneous province, SW China[J]. Chemical Geology, 236(1-2): 112-133. doi: 10.1016/j.chemgeo.2006.09.004 |
[83] | Zhong H, Zhu W G, Hu R Z, Xie L W, He D F, Liu F, Chu Z Y. 2009. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust[J]. Lithos, 110(1-4): 109-128. doi: 10.1016/j.lithos.2008.12.006 |
[84] | Zhong Y T, He B, Mundil R, Xu Y G. 2014. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province[J]. Lithos, 204: 14-19. doi: 10.1016/j.lithos.2014.03.005 |
[85] | Zhou M F, Arndt N T, Malpas J, Wang C Y, Kennedy A K. 2008. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China[J]. Lithos, 103(3-4): 352-368. doi: 10.1016/j.lithos.2007.10.006 |
[86] | Zhou M F, Chen W T, Wang C Y, Prevec S A, Liu P P, Howarth G H. 2013. Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits, SW China[J]. Geoscience Frontiers, 4(5): 481-502. doi: 10.1016/j.gsf.2013.04.006 |
[87] | Zhou M F, Malpas J, Song X Y, Robinson P T, Sun M, Kennedy A K, Lesher C M, Keays R R. 2002. A temporal link between the Emeishan large Igneous Province (SW China) and the end-Guadalupian mass extinction[J]. Earth and Planetary Science Letters, 196(3-4): 113-122. doi: 10.1016/S0012-821X(01)00608-2 |
[88] | Zhou M F, Robinson P T, Lesher C M, Keays R R, Zhang C J, Malpas J. 2005. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China[J]. Journal of Petrology, 46(11): 2253-2280. doi: 10.1093/petrology/egi054 |
[89] | Zhu Y X, Wang L X, Ma C Q, Wiedenbeck M, She Z B. 2022. Titanite as a tracer for Nb mineralization during magmatic and hydrothermal processes: The case of Fangcheng alkaline complex, Central China[J]. Chemical Geology, 608: 121028. doi: 10.1016/j.chemgeo.2022.121028 |
[90] | Zhu Y S, Yang J H, Sun J F, Wang H. 2017. Zircon Hf-O isotope evidence for recycled oceanic and continental crust in the sources of alkaline rocks[J]. Geology, 45(5): 407-410. doi: 10.1130/G38872.1 |
[91] | Zindler A, Hart S. 1986. Chemical Geodynamics[J]. Annual Review of Earth and Planetary Sciences, 14: 493-571. doi: 10.1146/annurev.ea.14.050186.002425 |
The map of regional geology and niobium-tantalum deposit (point) distribution in the Panxi region
The geologic map of the Baicao niobium-tantalum deposit in the Panxi region
Primitive mantle-normalized trace element spider diagrams and chondrite-normalized rare earth element diagrams of syenite in Baicao deposit, Panxi region
(87Sr/86Sr)i vs. εNd(t) diagram for syenite of Baicao and Baima complex in Panxi region
Zircon δ18O vs. εHf(t) diagram of the isotopically depleted and enriched rock group in the Panxi region