Citation: | XU Geng, XIAO Fangjing, CUI Xiaomei, BU Duo, ZHANG Qiangying. Concentrations and Sources of Arsenic and Fluoride in High-Temperature Geothermal Water from Yangbajing, Xizang[J]. Rock and Mineral Analysis, 2024, 43(3): 487-500. doi: 10.15898/j.ykcs.202310260168 |
Arsenic (As) and fluoride (F) are two typical harmful elements with high concentrations in Yangbajing high-temperature geothermal water, and the release of As and F from geothermal sources to the surface or near-surface environment can be further promoted and accelerated through geothermal development, causing surface water and soil environmental pollution. To understand the enrichment mechanism of As and F in the geothermal water body, hydrochemical characteristics as well as the concentrations of As and F were investigated by water quality analyzer, atomic fluorescence spectrometry, X-ray fluorescence spectrometry, and ion selective electrode method. The results indicate that the main sources of As and F in geothermal water and surface soil are water-rock leaching interaction. Unique hydrochemical characteristics (Na-HCO3∙Cl) with high concentration Na+ (reach to 445.5mg/L), poor in Ca2+ (as low as 3.31mg/L), and high pH (7.87−9.42) provided a favourable condition for the leaching of As and F in water. Affected by water vapor evaporation, the concentrations of As and F in hot spring water were higher than those in geothermal water and reached 6.50mg/L and 17.89mg/L, respectively. Notably, the total concentrations of As and F in waters were significantly higher than the maximum allowable emission concentrations for harmful components (0.5mg/L for As, and 10mg/L for F) in the Geothermal Resources Assessment Method (DZ40—85). Moreover, the concentrations of total As and F in the soils were 79.50−99.08mg/kg and 1162.70−1285.10mg/kg, respectively, significantly higher than the background values in Xizang soil. The BRIEF REPORT is available for this paper at
[1] | Wang G L, Zhang W, Ma F, et al. Overview on hydrothermal and hot dry rock researches in China[J]. China Geology, 2018, 1(2): 273−285. doi: 10.31035/cg2018021 |
[2] | 多吉. 典型高温地热系统——羊八井热田基本特征[J]. 中国工程科学, 2003(1): 42−47. doi: 10.3969/j.issn.1009-1742.2003.01.008 Duo J. The basic characteristics of the Yangbajing geothermal field—A typical high temperature geothermal system[J]. Strategic Study of CAE, 2003(1): 42−47. doi: 10.3969/j.issn.1009-1742.2003.01.008 |
[3] | 陈卫营, 薛国强, 赵平, 等. 西藏羊八井地热田SOTEM探测及热储结构分析[J]. 地球物理学报, 2023, 66(11): 4805−4816. doi: 10.6038/cjg2023Q0848 Chen W Y, Xue G Q, Zhao P, et al. SOTEM exploration and reservoir structure analysis of Yangbajain geothermal field, Xizang[J]. Chinese Journal of Geophysics, 2023, 66(11): 4805−4816. doi: 10.6038/cjg2023Q0848 |
[4] | Wang X, Wang G, Gan H, et al. Genetic mechanisms of sinter deposit zones in the Yangyi geothermal field, Tibet: Evidence from the hydrochemistry of geothermal fluid[J]. Geothermics, 2022, 103: 102408. doi: 10.1016/j.geothermics.2022.102408 |
[5] | 胡志华, 高洪雷, 万汉平, 等. 西藏羊八井地热田水热蚀变的时空演化特征[J]. 地质论评, 2022, 68(1): 359−374. doi: 10.16509/j.georeview.2021.12.105 Hu Z H, Gao H L, Wan H P, et al. Temporal and spatial evolution of hydrothermal alteration in the Yangbajing Geothermal Field, Xizang (Tibet)[J]. Geological Review, 2022, 68(1): 359−374. doi: 10.16509/j.georeview.2021.12.105 |
[6] | 刘高令, 姜贞贞, 刘高博, 等. 西藏地区羊八井地热水中胶体粒子分析与表征[J]. 岩矿测试, 2023, 42(6): 1156−1164. doi: 10.15898/j.ykcs.202303130034 Liu G L, Jiang Z Z, Liu G B, et al. Analysis and characterization of colloidal particles in Yangbajing geothermal water, Tibet[J]. Rock and Mineral Analysis, 2023, 42(6): 1156−1164. doi: 10.15898/j.ykcs.202303130034 |
[7] | 赵平, 金建, 张海政, 等. 西藏羊八井地热田热水的化学组成[J]. 地质科学, 1998(1): 62−73. Zhao P, Jin J, Zhang H Z, et al. Chemical composition of thermal water in the Yangbajing geothermal field, Tibet[J]. Scientia Geologica Sinica, 1998(1): 62−73. |
[8] | 孙红丽, 马峰, 蔺文静, 等. 西藏高温地热田地球化学特征及地热温标应用[J]. 地质科技情报, 2015, 34(3): 171−177. Sun H L, Ma F, Lin W J, et al. Geochemical characteristics and geothermometer application in high-temperature geothermal field in Tibet[J]. Geological Science and Technology Information, 2015, 34(3): 171−177. |
[9] | 刘勇, 王阳, 布多, 等. 羊八井地热水中金属特征分析及对周边环境的影响[J]. 西藏科技, 2014(9): 22−24. doi: 10.3969/j.issn.1004-3403.2014.09.008 Liu Y, Wang Y, Bu D, et al. Characterization of metals in geothermal water from Yangbajing and their impact on the surrounding environment[J]. Tibet Science and Technology, 2014(9): 22−24. doi: 10.3969/j.issn.1004-3403.2014.09.008 |
[10] | 张庆, 谭红兵, 渠涛, 等. 西藏地热水中典型有害元素对河流水质的影响[J]. 水资源保护, 2014, 30(4): 23−29. doi: 10.3969/j.issn.1004-6933.2014.04.006 Zhang Q, Tan H B, Qu T, et al. Impacts of typical harmful elements in geothermal water on river water quality in Tibet[J]. Water Resources Protection, 2014, 30(4): 23−29. doi: 10.3969/j.issn.1004-6933.2014.04.006 |
[11] | 魏晓阳, 郭清海, 袁建飞, 等. 高温地热流体来源氟在环境中的分布特征——以西藏羊八井热田为例[J]. 东华理工大学学报(自然科学版), 2009, 32(1): 38−44. doi: 10.3969/j.issn.1674-3504.2009.01.006 Wei X Y, Guo Q H, Yuan J F, et al. Environmental migration and transformation of fluoride from high-temperature geothermal fluid: A case study at Yangbajing, Tibet, China[J]. Journal of East China Institute of Technology, 2009, 32(1): 38−44. doi: 10.3969/j.issn.1674-3504.2009.01.006 |
[12] | 郭清海, 叶露, 魏晓阳, 等. 富砷地热废水排放的水环境效应——以西藏羊八井热田为例[J]. 环境科学与技术, 2009, 32(9): 116−119, 128. doi: 10.3969/j.issn.1003-6504.2009.09.026 Guo Q H, Ye L, Wei X Y, et al. Water-environmental effects induced by discharging geothermal wastewater with high as levels: A case study at Yangbajing in Tibet[J]. Environmental Science & Technology, 2009, 32(9): 116−119, 128. doi: 10.3969/j.issn.1003-6504.2009.09.026 |
[13] | Guo Q H, Wang Y X, Liu W. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China[J]. Journal of Volcanology and Geothermal Research, 2007, 166(3): 255−268. doi: 10.1016/j.jvolgeores.2007.08.004 |
[14] | Zheng T, Deng Y, Lin H, et al. Hydrogeochemical controls on As and B enrichment in the aqueous environment from the Western Tibetan Plateau: A case study from the Singe Tsangpo River Basin[J]. Science of the Total Environment, 2022, 817: 152978. doi: 10.1016/j.scitotenv.2022.152978 |
[15] | 孙红丽, 马峰, 刘昭, 等. 西藏高温地热显示区氟分布及富集特征[J]. 中国环境科学, 2015, 35(1): 251−259. Sun H L, Ma F, Liu Z, et al. The distribution and enrichment characteristics of fluoride in geothermal active area in Tibet[J]. China Environmental Science, 2015, 35(1): 251−259. |
[16] | Li S, Wang M, Yang Q, et al. Enrichment of arsenic in surface water, stream sediments and soils in Tibet[J]. Journal of Geochemical Exploration, 2013, 135: 104−116. doi: 10.1016/j.gexplo.2012.08.020 |
[17] | Guo Q, He T, Wu Q, et al. Constraints of major ions and arsenic on the geological genesis of geothermal water: Insight from a comparison between Xiong’an and Yangbajing, two hydrothermal systems in China[J]. Applied Geochemistry, 2020, 117: 104589. doi: 10.1016/j.apgeochem.2020.104589 |
[18] | Guo Q H, Planer-Friedrich B, Liu M L, et al. Magmatic fluid input explaining the geochemical anomaly of very high arsenic in some Southern Tibetan geothermal waters[J]. Chemical Geology, 2019, 513: 32−43. doi: 10.1016/j.chemgeo.2019.03.008 |
[19] | Qiao W, Cao W, Gao Z, et al. Contrasting behaviors of groundwater arsenic and fluoride in the lower reaches of the Yellow River Basin, China: Geochemical and modeling evidences[J]. Science of the Total Environment, 2022, 851: 158134. doi: 10.1016/j.scitotenv.2022.158134 |
[20] | 王妍妍, 曹文庚, 潘登, 等. 豫北平原地下水高砷和高氟分布规律与成因[J]. 岩矿测试, 2022, 41(6): 1095−1109. doi: 10.15898/j.cnki.11-2131/td.202110090141 Wang Y Y, Cao W G, Pan D, et al. Distribution and origin of high arsenic and fluoride in groundwater of the North Henan Plain[J]. Rock and Mineral Analysis, 2022, 41(6): 1095−1109. doi: 10.15898/j.cnki.11-2131/td.202110090141 |
[21] | 孙明露. 西藏羊八井地区地热资源水化学特征与成因机制研究[D]. 拉萨: 西藏大学, 2023. Sun M L. Hydrochemical characteristics and genetic mechanism of geothermal resource in the Yangbajing area, Tibet[D]. Lhasa: Tibet University, 2023. |
[22] | 马丹, 鲍新华, 张大勇, 等. 拉萨河羊八井剖面水化学特征及水质评价[J]. 科学技术与工程, 2018, 18(15): 190−195. doi: 10.3969/j.issn.1671-1815.2018.15.028 Ma D, Bao X H, Zhang D Y, et al. Hydro-chemical characteristics and water quality evaluation of the Yangbajing section in the Lhasa River Basin[J]. Science Technology and Engineering, 2018, 18(15): 190−195. doi: 10.3969/j.issn.1671-1815.2018.15.028 |
[23] | 布多, 李明礼, 许祖银, 等. 西藏拉萨河流域巴嘎雪湿地水化学特征[J]. 中国环境科学, 2016, 36(3): 793−797. doi: 10.3969/j.issn.1000-6923.2016.03.023 Bu D, Li M L, Xu Z Y, et al. Study on aquatic chemistry characteristics of Bagaxue wetland in Lhasa River Basin, Tibet[J]. China Environmental Science, 2016, 36(3): 793−797. doi: 10.3969/j.issn.1000-6923.2016.03.023 |
[24] | Guo Q. Hydrogeochemistry of high-temperature geothermal systems in China: A review[J]. Applied Geochemistry, 2012, 27(10): 1887−1898. doi: 10.1016/j.apgeochem.2012.07.006 |
[25] | Planer-Friedrich B, London J, Mccleskey R B, et al. Thioarsenates in geothermal waters of Yellowstone National Park: Determination, preservation, and geochemical importance[J]. Environmental Science and Technology, 2007, 41(15): 5245−5251. doi: 10.1021/es070273v |
[26] | Yoshizuka K, Nishihama S, Sato H. Analytical survey of arsenic in geothermal waters from sites in Kyushu, Japan, and a method for removing arsenic using magnetite[J]. Environmental Geochemistry and Health, 2010, 32(4): 297−302. doi: 10.1007/s10653-010-9300-3 |
[27] | Kundu N, Panigrahi M K, Sharma S P, et al. Delineation of fluoride contaminated groundwater around a hot spring in Nayagarh, Orissa, India using geochemical and resistivity studies[J]. Environmental Geology, 2002, 43(1-2): 228−235. doi: 10.1007/s00254-002-0651-7 |
[28] | Birkle P, Merkle B. Environmental impact by spill of geothermal fluids at the geothermal field of Los Azufres, Michoacan, Mexico[J]. Water Air and Soil Pollution, 2000, 124(3-4): 371−410. doi: 10.1023/A:1005242824628 |
[29] | Sracek O, Wanke H, Ndakunda N N, et al. Geochemistry and fluoride levels of geothermal springs in Namibia[J]. Journal of Geochemical Exploration, 2015, 148: 96−104. doi: 10.1016/j.gexplo.2014.08.012 |
[30] | Stefánsson A, Arnórsson S. Feldspar saturation state in natural waters[J]. Geochimicaet Cosmochimica Acta, 2000, 64(15): 2567−2584. doi: 10.1016/S0016-7037(00)00392-6 |
[31] | Gherardi F, Panichi C, Gonfiantini R, et al. Isotope systematics of C-bearing gas compounds in the geothermal fluids of Larderello, Italy[J]. Geothermics, 2005, 34(4): 442−470. doi: 10.1016/j.geothermics.2004.09.005 |
[32] | 张晓平. 西藏土壤环境背景值的研究[J]. 地理科学, 1994(1): 49−55. doi: 10.13249/j.cnki.sgs.1994.01.00 Zhang X P. A study on the background values of soil environment in Tibet[J]. Geoscience, 1994(1): 49−55. doi: 10.13249/j.cnki.sgs.1994.01.00 |
[33] | 陈刚. 岩溶型地热尾水排放对周边环境的影响[J]. 化工矿产地质, 2021, 43(2): 144−149. doi: 10.3969/j.issn.1006-5296.2021.02.007 Chen G. Influence of karst geothermal tail water discharge on peripheral environment[J]. Geology of Chemical Minerals, 2021, 43(2): 144−149. doi: 10.3969/j.issn.1006-5296.2021.02.007 |
[34] | 冯卫卫, 罗锡明, 刘丹丹. 寨上金矿矿区河流沉积物中砷的形态分析[J]. 生态环境学报, 2011, 20(4): 659−662. doi: 10.3969/j.issn.1674-5906.2011.04.012 Feng W W, Luo X M, Liu D D. Speciation of arsenic in sediment of the river around Zhaishang goldmine[J]. Ecology and Environmental Sciences, 2011, 20(4): 659−662. doi: 10.3969/j.issn.1674-5906.2011.04.012 |
[35] | 刘丹青, 朱梦杰, 汤琳. 上海市土壤氟含量风险管控限值探讨[J]. 中国环境监测, 2021, 37(4): 128−134. doi: 10.19316/j.issn.1002-6002.2021.04.17 Liu D Q, Zhu M J, Tang L. Discussion on risk control limits of soil fluorine content in Shanghai[J]. Environmental Monitoring in China, 2021, 37(4): 128−134. doi: 10.19316/j.issn.1002-6002.2021.04.17 |
[36] | 杨惠. 云南省洱源县高氟温泉水中氟的来源及其对周围环境影响分析[D]. 昆明: 云南师范大学, 2015. Yang H. Analysis of the source of fluorine in high-fluorine hot spring water and its impact on the surrounding environment in Eryuan County, Yunnan Province[D]. Kunming: Yunnan Normal University, 2015. |
Geographical location (a) and surrounding distribution pattern (b) of Yangbajing geothermal power plant
Piper three-line diagram of the hydrochemical composition of water samples
The concentrations of total As (a) and F (b) in water samples, and pictures of hot spring (c) and geothermal water (d)
The concentrations of total As (a) and F (b) in the soil samples
Hydrochemical composition of water sample (a), the concentrations of total As and F in water sample (b), pictures of hot spring and geothermal water (c), and the concentrations of total As and F in the soils (d).