Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 6
Article Contents

XIAO Xilian, GUO Min, SHAO Xin, TAN Juanjuan, WANG Lei, QIU Xiaofei. Rare Earth Element Contents and Occurrence Forms in Weathering Crust Ion Adsorption Rare Earth Ore[J]. Rock and Mineral Analysis, 2024, 43(6): 866-879. doi: 10.15898/j.ykcs.202403130042
Citation: XIAO Xilian, GUO Min, SHAO Xin, TAN Juanjuan, WANG Lei, QIU Xiaofei. Rare Earth Element Contents and Occurrence Forms in Weathering Crust Ion Adsorption Rare Earth Ore[J]. Rock and Mineral Analysis, 2024, 43(6): 866-879. doi: 10.15898/j.ykcs.202403130042

Rare Earth Element Contents and Occurrence Forms in Weathering Crust Ion Adsorption Rare Earth Ore

  • The weathering crust ion adsorption type rare earth deposit has the characteristics of complete REE types, low radioactivity, high heavy rare earth contents, and easy mining, making it an extremely important type of rare earth deposit. At present, most of the research on the determination of REEs in this deposit only measures the total amount and ionic phase components of REEs, and some methods have complicated operating procedures, while there is relatively little research on the analysis of various REE forms. However, when studying the mineralization laws of weathering crust ion adsorption type rare earth deposits, it is not only necessary to analyze the total amount of REEs, but also to analyze the chemical forms that affect the mineralization background, migration, enrichment process, long-term differences, and availability of REEs in the deposit. Therefore, it is necessary to accurately determine the total amount and contents of various occurrence REE forms in weathering crust ion adsorption type rare earth deposits. In this article, a five acid mixed digestion was used as a pretreatment method for determining the total amount of REEs, and the results of rare earth elements speciation analysis determined by BCR method and Tessier method were compared. ICP-MS was used as the detection method to explore the distribution of the total amount and various REE forms in the samples. The results show that the five-acid mixed digestion can completely dissolve all REEs in the rare earth ore sample, and the operation is simple. The precision (RSD) of this method was between 0.82% to 5.19%, the detection limit was between 0.002g/g to 0.027g/g, and the relative error between the measured value and the recognized value of each element was between −4.70% to 6.65%. The ∑LREEs/∑HREEs was between 1.25 to 16.50, covering the enrichment of light rare earths and heavy rare earths. The relative deviation (RD) of rare earth forms extracted by the two methods of BCR and Tessier was 0.79% to 8.07%, and the extraction results correspond and match each other. The rate of recovery was between 84.75% to 107.13%. The RD of ∑REEs determination values was between 0.62% to 21.00%, and the relative error (RE) was less than 40%. In contrast, the BCR method has a simpler pre-processing flow, but the partitioned forms are not as intuitive and specific as the Tessier method, which cannot be used to obtain more detailed data on each form. Thus, under the conditions of this experiment, the Tessier method may have good adaptability for rare earth form analysis. REEs in the fully weathered layer samples of the weathering crust mainly exist on the surface of clay minerals in the form of ion adsorption, resulting in the highest content of ion exchange state. As the depth of the weathering crust profile increases and the pH rises, REEs are more likely to bind with carbonate or bicarbonate ions, leading to an increase in the rare earth contents in the carbonate bound state. Elemental Ce is easily oxidized from Ce3+to Ce4+ in this layer, and stays in situ in the form of precipitation, resulting in Ce anomaly; REEs in the parent rock are mainly enriched in the independent mineral lattice, with the highest residual content. The variation patterns of all REEs under different occurrence forms are basically consistent.

  • 加载中
  • [1] 王倩. 土壤稀土形态分析方法与地球化学应用研究[D]. 北京: 中国地质大学(北京), 2014.

    Google Scholar

    Wang Q. Study on the speciation of REE in soil and its application in geochemistry[D]. Beijing: China University of Geosciences (Beijing), 2014.

    Google Scholar

    [2] 黄健. 广东仁居风化壳离子吸附型稀土矿床中稀土元素的富集分异机制研究[D]. 北京: 中国科学院大学, 2021.

    Google Scholar

    Huang J. REE enrichment and fractionation mechanism of the Renju ion adsorption type REE deposit in Guangdong Province [D]. Beijing: University of Chinese Academy of Sciences, 2021.

    Google Scholar

    [3] 林卓玲, 黄光庆. 土壤稀土元素的迁移-富集机制及其生态效应[J]. 地球环境学报, 2023, 14(5): 521−538. doi: 10.7515/JEE221024

    CrossRef Google Scholar

    Lin Z L, Huang G Q. Migration enrichment mechanism and ecological effects of rare elements in soil[J]. Journal of Earth Environment, 2023, 14(5): 521−538. doi: 10.7515/JEE221024

    CrossRef Google Scholar

    [4] 宋旭东, 樊小伟, 陈文, 等. 电感耦合等离子体质谱法测定离子吸附型稀土矿中全相稀土总量[J]. 冶金分析, 2018, 38(6): 19−24. doi: 10.13228/j.boyuan.issn1000-7571.010305

    CrossRef Google Scholar

    Song X D, Fan X W, Chen W, et al. Determination of total-phase rare earth content in ion-adsorption rare earth ore by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(6): 19−24. doi: 10.13228/j.boyuan.issn1000-7571.010305

    CrossRef Google Scholar

    [5] 朱云, 郭琳, 于汀汀, 等. 提取风化壳淋积型稀土矿中稀土元素的前处理方法探讨[J]. 岩矿测试, 2023, 42(5): 877−887. doi: 10.15898/j.ykcs.202308070130

    CrossRef Google Scholar

    Zhu Y, Guo L, Yu T T, et al. Discussion on pretreatment method for extracting rare earth elements from weathered crust elution-deposited rare earth ores[J]. Rock and Mineral Analysis, 2023, 42(5): 877−887. doi: 10.15898/j.ykcs.202308070130

    CrossRef Google Scholar

    [6] 王臻, 肖仪武, 冯凯. 离子吸附型稀土矿成矿特点及元素赋存形式[J]. 有色金属(选矿部分), 2021(6): 43−51. doi: 10.3969/j.issn.1671-9492.2021.06.006

    CrossRef Google Scholar

    Wang Z, Xiao Y W, Feng K. Metallogenic characteristics and occurrence of REE in ion adsorption type rare earth deposits[J]. Nonferrous Metals (Mineral Processing Section), 2021(6): 43−51. doi: 10.3969/j.issn.1671-9492.2021.06.006

    CrossRef Google Scholar

    [7] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844−851. doi: 10.1021/ac50043a017

    CrossRef Google Scholar

    [8] Quevauviller P, Rauret G, Griepink B. Single and sequential extraction in sediments and soils[J]. International Journal of Environmental Analytical Chemistry, 1993, 51(1/2/3/4): 231−235. doi: 10.1080/03067319308027629

    CrossRef Google Scholar

    [9] Shuman L. Fractionation method for soil microelements[J]. Soil Science, 1985, 140(1): 11−22. doi: 10.1097/00010694-198507000-00003

    CrossRef Google Scholar

    [10] Gibson M J, Farmer J G. Multi-step sequential chemical extraction of heavy metals from urban soils[J]. Environmental Pollution, 1986, 11(2): 117−135. doi: 10.1016/0143-148x(86)90039-x

    CrossRef Google Scholar

    [11] Miller W P, Martens D C, Zelazny L W. Effect of sequence in extraction of trace metals from soils[J]. Soil Science of America Journal, 1986, 50(3): 598−601. doi: 10.2136/sssaj1986.03615995005000030011x

    CrossRef Google Scholar

    [12] 李娜, 夏瑜, 何绪文, 等. 基于Tessier法的土壤中不同形态镉的转化及其影响因素研究进展[J]. 土壤通报, 2021, 52(6): 1505−1512. doi: 10.19336/j.cnki.trtb.2020111101

    CrossRef Google Scholar

    Li N, Xia Y, He X W, et al. Research progress of Cd form transformation and the effective environmental factors in soil based on Tessier analysis[J]. Chinese Journal of Soil Science, 2021, 52(6): 1505−1512. doi: 10.19336/j.cnki.trtb.2020111101

    CrossRef Google Scholar

    [13] 杨华, 王艳丽, 李利荣. 涡旋提取-改进BCR法测定土壤中重金属的化学形态[J]. 中国无机分析化学, 2023, 13(6): 598−603. doi: 10.3969/j.issn.2095-1035.2023.06.013

    CrossRef Google Scholar

    Yang H, Wang Y L, Li L R. Determination of chemical morphology of heavy metals in soil by vortex extraction and improved BCR method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(6): 598−603. doi: 10.3969/j.issn.2095-1035.2023.06.013

    CrossRef Google Scholar

    [14] 余璨. BCR多级连续提取法在拉萨河流域表层沉积物重金属形态分析研究中的应用[D]. 拉萨: 西藏大学, 2019.

    Google Scholar

    Yu C. Application of BCR sequential extraction procedure on heavy metal speciation in surface sediments of the Lhasa River Catchments[D]. Lhasa: Tibet University, 2019.

    Google Scholar

    [15] 陈莉薇, 陈海英, 武君, 等. 利用Tessier五步法和改进BCR法分析铜尾矿中Cu、Pb、Zn赋存形态的对比研究[J]. 安全与环境学报, 2020, 20(2): 735−740. doi: 10.13637/j.issn.1009-6094.2019.0661

    CrossRef Google Scholar

    Chen L W, Chen H Y, Wu J, et al. Comparative study on speciation of Cu, Pb and Zn from mining tailings via Tessier 5-step sequential extraction and improved BCR method[J]. Journal of Safety and Environment, 2020, 20(2): 735−740. doi: 10.13637/j.issn.1009-6094.2019.0661

    CrossRef Google Scholar

    [16] 李默挺, 陶红, 孙燕, 等. 改进的BCR连续提取法-电感耦合等离子体质谱法分析水泥基底泥固化材料中重金属形态[J]. 理化检验(化学分册), 2019, 55(4): 401−407.

    Google Scholar

    Li M T, Tao H, Sun Y, et al. ICP-MS determination of combination states of heavy metal elements in solidified materials of cement-based sediment with separation by modified BCR successive extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(4): 401−407.

    Google Scholar

    [17] 张安丰, 杨博为, 王永鑫, 等. 动能歧视(KED)-电感耦合等离子体质谱(ICP-MS)法测定贵州沉积型稀土矿中16中稀土元素[J]. 中国无机分析化学, 2024, 14(5): 575−585. doi: 10.3969/j.issn.2095-1035.2024.05.009

    CrossRef Google Scholar

    Zhang A F, Yang B W, Wang Y X, et al. Determination of 16 rare elements in sedimentary rare earth ores in Guizhou Province by inductively coupled plasma mass spectrometry with kinetic energy discrimination (KED)[J]. Chinese Journal of inorganic Analytical Chemistry, 2024, 14(5): 575−585. doi: 10.3969/j.issn.2095-1035.2024.05.009

    CrossRef Google Scholar

    [18] 张民, 何显川, 谭伟, 等. 云南临沧花岗岩离子吸附型稀土矿床地球化学特征及其成因讨论[J]. 中国地质, 2022, 49(1): 201−214. doi: 10.12029/gc20220112

    CrossRef Google Scholar

    Zhang M, He X C, Tan W, et al. Geochemical characteristics and genesis of ion-adsorption type REE deposit in the Lincang granite, Yunnan[J]. Geology in China, 2022, 49(1): 201−214. doi: 10.12029/gc20220112

    CrossRef Google Scholar

    [19] 高国华, 颜鋆, 赖安邦, 等. 离子吸附型稀土矿抗坏血酸强化-还原浸取过程[J]. 中国有色金属学报, 2019, 29(6): 1289−1297. doi: 10.19476/j.ysxb.1004.0609.2019.06.18

    CrossRef Google Scholar

    Gao G H, Yan J, Lai A B, et al. Intensification-reduction leaching process of ion-adsorption type rare earths ore with ascorbic acid[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(6): 1289−1297. doi: 10.19476/j.ysxb.1004.0609.2019.06.18

    CrossRef Google Scholar

    [20] 周华娇. 离子吸附型稀土浸取特征评价与浸取剂选择[D]. 南昌: 南昌大学, 2022.

    Google Scholar

    Zhou H J. Evaluation of ion-adsorption rare earths leaching characterization and the selection of leaching reagents[D]. Nanchang: Nanchang University, 2022.

    Google Scholar

    [21] 王学峰, 许春雪, 顾雪, 等. 典型稀土矿区周边土壤中稀土元素含量及赋存形态研究[J]. 岩矿测试, 2019, 38(3): 137−146. doi: 10.15898/j.cnki.11-2131/td.201807180085

    CrossRef Google Scholar

    Wang X F, Xu C X, Gu X, et al. Concentration and fractionation of rare earth elements in soils surrounding rare earth ore area[J]. Rock and Mineral Analysis, 2019, 38(3): 137−146. doi: 10.15898/j.cnki.11-2131/td.201807180085

    CrossRef Google Scholar

    [22] 高晶晶, 刘季花, 李先国, 等. 富钴结壳中稀土元素化学相态分析方法及其应用[J]. 分析化学, 2015, 43(12): 1895−1900. doi: 10.11895/j.issn.0253-3820.150418

    CrossRef Google Scholar

    Gao J J, Liu J H, Li X G, et al. Chemical phase analysis of rare earth elements in cobalt-rich crusts and its application[J]. Chinese Journal of Analytical Chemistry, 2015, 43(12): 1895−1900. doi: 10.11895/j.issn.0253-3820.150418

    CrossRef Google Scholar

    [23] 王彪, 黄庆, 何良伦, 等. 黔西北麻乍地区沉积型稀土矿中稀土元素赋存状态研究[J]. 矿物学报, 2023, 43(12): 789−798. doi: 10.16461/j.cnki.1000-4734.2023.43.087

    CrossRef Google Scholar

    Wang B, Huang Q, He L L, et al. The occurrence state of rare earth elements in sedimentary rare earth deposits in Mazha area, Northwest Guizhou[J]. Acta Mineralogica Sinica, 2023, 43(12): 789−798. doi: 10.16461/j.cnki.1000-4734.2023.43.087

    CrossRef Google Scholar

    [24] 夏传波, 成学海, 姜云, 等. 密闭酸溶-电感耦合等离子体发射光谱/质谱法测定花岗伟晶岩中32种微量元素[J]. 岩矿测试, 2024, 43(2): 247−258. doi: 10.15898/j.ykcs.202307310105

    CrossRef Google Scholar

    Xia C B, Cheng X H, Jiang Y, et al. Determination of 32 trace elements in granite pegmatite by inductively coupled plasma-optical emission spectrometry and mass spectrometry with closed acid dissolution[J]. Rock and Mineral Analysis, 2024, 43(2): 247−258. doi: 10.15898/j.ykcs.202307310105

    CrossRef Google Scholar

    [25] 苏春风. 电感耦合等离子体质谱(ICP-MS)法测定稀土矿中16种稀土元素含量[J]. 中国无机分析化学, 2020, 10(6): 28−32. doi: 10.3969/j.issn.2095-1035.2020.06.007

    CrossRef Google Scholar

    Su C F. Determination of 16 rare earth elements in rare earth ores by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(6): 28−32. doi: 10.3969/j.issn.2095-1035.2020.06.007

    CrossRef Google Scholar

    [26] 黄健, 谭伟, 梁晓亮, 等. 富稀土矿物的风化特征及其对稀土成矿过程的影响——以广东仁居离子吸附型稀土矿床为例[J]. 地球化学, 2022, 51(6): 684−695. doi: 10.19700/j.0379-1726.2022.06.007

    CrossRef Google Scholar

    Huang J, Tan W, Liang X L, et al. Weathering characters of REE-bearing accessory minerals and their effects on REE mineralization in Renju Regolith-hosted REE deposits in Guangdong Province[J]. Geochimica, 2022, 51(6): 684−695. doi: 10.19700/j.0379-1726.2022.06.007

    CrossRef Google Scholar

    [27] 梁晓亮, 谭伟, 马灵涯, 等. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘, 2022, 29(1): 29−41. doi: 10.13745/j.esf.sf.2021.8.8

    CrossRef Google Scholar

    Liang X L, Tan W, Ma L Y, et al. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits[J]. Earth Science Frontiers, 2022, 29(1): 29−41. doi: 10.13745/j.esf.sf.2021.8.8

    CrossRef Google Scholar

    [28] Li Y H M, Zhou M F, Williams-Jones A E. The genesis of regolith-hosted heavy rare earth element deposits: Insights from the world-class Zudong deposit in Jiangxi Province, South China[J]. Economic Geology, 2019, 114(3): 541−568. doi: 10.5382/econgeo.4642

    CrossRef Google Scholar

    [29] 张怡斐. 市政污泥热处理过程中主要污染物的迁移转化[D]. 上海: 上海交通大学, 2011.

    Google Scholar

    Zhang Y F. Migratory behavior of major contaminant in the thermal treatment process of sludge[D]. Shanghai: Shanghai Jiao Tong University, 2011.

    Google Scholar

    [30] Han R S, Liu C Q, Emmanuel J M C, et al. REE geochemistry of altered tectonites in the Huize base-metal district, Yunnan, China[J]. Geochemistry: Exploration, Environment, Analysis, 2012, 12: 127−146. doi: 10.1144/1467-7873/10-mindep-053

    CrossRef Google Scholar

    [31] 罗武平, 李光来, 李成详, 等. 江西相山下家岭稀土矿风化壳剖面地球化学特征[J]. 矿物学报, 2019, 39(3): 237−246. doi: 10.16461/j.cnki.1000-4734.2019.39.057

    CrossRef Google Scholar

    Luo W P, Li G L, Li C X, et al. Geochemical characteristics of the weathered crust profile in the Xiajialing REE deposit of the Xiangshan area, Jiangxi Province, China[J]. Acta Mineralogica Sinica, 2019, 39(3): 237−246. doi: 10.16461/j.cnki.1000-4734.2019.39.057

    CrossRef Google Scholar

    [32] Williams-Jones A E, Vasyukova O V. The economic geology of scandium, the runt of the rare earth element litter[J]. Economic Geology, 2018, 113(4): 973−988. doi: 10.5382/econgeo.2018.4579

    CrossRef Google Scholar

    [33] 王长兵, 倪光清, 瞿亮, 等. 花岗岩风化壳中Ce地球化学特征及其找矿意义——以滇西岔河离子吸附型稀土矿床为例[J]. 矿床地质, 2021, 10(5): 1013−1028. doi: 10.16111/j.0258-7106.2021.05.008

    CrossRef Google Scholar

    Wang C B, Ni G Q, Qu L, et al. Ce geochemical characteristics of granite weathering crust and its prospecting significance: A case study of Chahe ion adsorption rare earth deposit in Western Yunnan[J]. Mineral Deposits, 2021, 10(5): 1013−1028. doi: 10.16111/j.0258-7106.2021.05.008

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(6)

Article Metrics

Article views(138) PDF downloads(100) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint