2024 Vol. 44, No. 6
Article Contents

LONG Hengcha, XI Shichuan, YANG Huiliang, ZHAO Lihong, LI Jinyang, LUAN Zhendong. Geochemical characteristics of sediments in the Haima Cold Seep area: indication for methane seepage and sediment source[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 105-120. doi: 10.16562/j.cnki.0256-1492.2023101001
Citation: LONG Hengcha, XI Shichuan, YANG Huiliang, ZHAO Lihong, LI Jinyang, LUAN Zhendong. Geochemical characteristics of sediments in the Haima Cold Seep area: indication for methane seepage and sediment source[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 105-120. doi: 10.16562/j.cnki.0256-1492.2023101001

Geochemical characteristics of sediments in the Haima Cold Seep area: indication for methane seepage and sediment source

More Information
  • Seabed methane seepage can have a significant impact on the marine sedimentary environment, causing differences in mineralogy, geochemistry, and other aspects between sediments in methane seepage areas and those in normal sea areas. Therefore, cold seep sediments are important carriers for recording methane seepage events on the seabed. A 400-cm sediment core was analyzed that located at Station ZZY7 in the newly discovered "Haima" Cold Seep area in the Qiongdongnan Basin, South China Sea. The mineral compositions and geochemical characteristics of major elements, trace and rare earth elements of the core sediments were studied with which the Bayon model was combined. Result show that terrigenous sediments were accounted for 75% of the total sediments, consisting of mainly quartz, feldspar, clay minerals etc; and biological and authigenic mineral deposits took 25%, and composed of mainly aragonite, calcite, and high magnesium calcite. The sediment minerals at the site are numerous and have diverse origins. An indication system was established using indices of ∑REE, LREE/HREE, δCe, CaO, MoEF, UEF, and carbonate mineral percentages, with which methane seepage could be detected. Four sulfate methane transition zones (SMTZ) were recognized, from which four methane seepage events (MRE) in the cold seep area at 210~300 cmbsf (MRE1), 170~190 cmbsf (MRE2), 80 cmbsf (MRE3), and 10~50 cmbsf (MRE4) were inferred. Combining the sediment weathering index and methane seepage history in the study area, it was found that the potassium content of the early Cenozoic strata was high due to potassium metasomatism, while the sediments at the station were not affected by diagenesis. This discovery has certain guiding significance for using the sediment-weathering index of the Haima cold seepage area to study the history and causes of methane seepage.

  • 加载中
  • [1] 王峻雅. 南海北部神狐海域Site 4B站位沉积物的地球化学特征及其对甲烷渗漏的指示意义[D]. 浙江大学硕士学位论文, 2019: 1-69

    Google Scholar

    WANG Junya. Geochemical characteristics of site 4B sediments from the Shenhu area of the South China Sea: implications for methane leakage[D]. Master Dissertation of Zhejiang University, 2019: 1-69.]

    Google Scholar

    [2] Feng D, Chen D F. Authigenic carbonates from an active cold seep of the northern South China Sea: new insights into fluid sources and past seepage activity[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122:74-83. doi: 10.1016/j.dsr2.2015.02.003

    CrossRef Google Scholar

    [3] Milkov A V, Sassen R, Apanasovich T V, et al. Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean[J]. Geophysical Research Letters, 2003, 30(2):1037.

    Google Scholar

    [4] Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2-4):362-407. doi: 10.1016/j.palaeo.2005.06.018

    CrossRef Google Scholar

    [5] Bohrmann G, Torres M E. Gas hydrates in marine sediments[M]//Schulz H D, Zabel M. Marine Geochemistry. Berlin: Springer, 2006: 481-512.

    Google Scholar

    [6] Canet C, Prol-Ledesma R M, Escobar-Briones E, et al. Mineralogical and geochemical characterization of hydrocarbon seep sediments from the Gulf of Mexico[J]. Marine and Petroleum Geology, 2006, 23(5):605-619. doi: 10.1016/j.marpetgeo.2006.05.002

    CrossRef Google Scholar

    [7] Deng Y N, Chen F, Hu Y, et al. Methane seepage patterns during the Middle Pleistocene inferred from molybdenum enrichments of seep carbonates in the South China Sea[J]. Ore Geology Reviews, 2020, 125:103701. doi: 10.1016/j.oregeorev.2020.103701

    CrossRef Google Scholar

    [8] Bayon G, Pierre C, Etoubleau J, et al. Sr/Ca and Mg/Ca ratios in Niger Delta sediments: implications for authigenic carbonate genesis in cold seep environments[J]. Marine Geology, 2007, 241(1-4):93-109. doi: 10.1016/j.margeo.2007.03.007

    CrossRef Google Scholar

    [9] 张美, 邬黛黛, 吴能友. 南海北部天然气水合物沉积环境中自生矿物特征[J]. 新能源进展, 2016, 4(1):20-27 doi: 10.3969/j.issn.2095-560X.2016.01.004

    CrossRef Google Scholar

    ZHANG Mei, WU Daidai, WU Nengyou. Characteristics of authigenic minerals from the northern South China Sea[J]. Advances in New and Renewable Energy, 2016, 4(1):20-27.] doi: 10.3969/j.issn.2095-560X.2016.01.004

    CrossRef Google Scholar

    [10] Pierre C, Demange J, Blanc-Valleron M M, et al. Authigenic carbonate mounds from active methane seeps on the southern Aquitaine Shelf (Bay of Biscay, France): evidence for anaerobic oxidation of biogenic methane and submarine groundwater discharge during formation[J]. Continental Shelf Research, 2017, 133:13-25. doi: 10.1016/j.csr.2016.12.003

    CrossRef Google Scholar

    [11] Feng D, Qiu J W, Hu Y, et al. Cold seep systems in the South China Sea: an overview[J]. Journal of Asian Earth Sciences, 2018, 168:3-16. doi: 10.1016/j.jseaes.2018.09.021

    CrossRef Google Scholar

    [12] Wang J L, Wu S G, Kong X, et al. Subsurface fluid flow at an active cold seep area in the Qiongdongnan Basin, northern South China Sea[J]. Journal of Asian Earth Sciences, 2018, 168:17-26. doi: 10.1016/j.jseaes.2018.06.001

    CrossRef Google Scholar

    [13] Miao X M, Feng X L, Li J R, et al. Tracing the paleo-methane seepage activity over the past 20, 000 years in the sediments of Qiongdongnan Basin, northwestern South China Sea[J]. Chemical Geology, 2021, 559:119956. doi: 10.1016/j.chemgeo.2020.119956

    CrossRef Google Scholar

    [14] Dan X P, Liu S, Feng X L, et al. Geochemical record of methane seepage in carbon cycling and possible correlation with climate events in the Qiongdongnan Basin, South China Sea[J]. Marine and Petroleum Geology, 2023, 149:106061. doi: 10.1016/j.marpetgeo.2022.106061

    CrossRef Google Scholar

    [15] Miao X M, Feng X L, Liu X T, et al. Effects of methane seepage activity on the morphology and geochemistry of authigenic pyrite[J]. Marine and Petroleum Geology, 2021, 133:105231. doi: 10.1016/j.marpetgeo.2021.105231

    CrossRef Google Scholar

    [16] Hu B, Wang L S, Yan W B, et al. The tectonic evolution of the Qiongdongnan Basin in the northern margin of the South China Sea[J]. Journal of Asian Earth Sciences, 2013, 77:163-182. doi: 10.1016/j.jseaes.2013.08.022

    CrossRef Google Scholar

    [17] 王振峰, 李绪深, 孙志鹏, 等. 琼东南盆地深水区油气成藏条件和勘探潜力[J]. 中国海上油气, 2011, 23(1):7-13,31 doi: 10.3969/j.issn.1673-1506.2011.01.002

    CrossRef Google Scholar

    WANG Zhenfeng, LI Xushen, SUN Zhipeng, et al. Hydrocarbon accumulation conditions and exploration potential in the deep-water region, Qiongdongnan Basin[J]. China Offshore Oil and Gas, 2011, 23(1):7-13,31.] doi: 10.3969/j.issn.1673-1506.2011.01.002

    CrossRef Google Scholar

    [18] 范彩伟, 李绪深, 刘昆, 等. 琼东南盆地乐东、陵水凹陷中新统岩性地层圈闭成藏条件[J]. 中国海上油气, 2016, 28(2):53-59

    Google Scholar

    FAN Caiwei, LI Xushen, LIU Kun, et al. Hydrocarbon accumulation condition of Miocene litho-stratigraphic trap in Ledong & Lingshui sags, Qiongdongnan Basin[J]. China Offshore Oil and Gas, 2016, 28(2):53-59.]

    Google Scholar

    [19] 谢玉洪, 范彩伟, 周家雄, 等. 琼东南盆地中中新世重力流海底扇沉积特征及控制因素[J]. 天然气地球科学, 2016, 27(2):220-228 doi: 10.11764/j.issn.16721926.2016.02.0220

    CrossRef Google Scholar

    XIE Yuhong, FAN Caiwei, ZHOU Jiaxiong, et al. Sedimentary features and controlling factors of the gravity flows in submarine fan of Middle Miocene in the Qiongdongnan Basin[J]. Natural Gas Geoscience, 2016, 27(2):220-228.] doi: 10.11764/j.issn.16721926.2016.02.0220

    CrossRef Google Scholar

    [20] 赵静, 梁前勇, 尉建功, 等. 南海北部陆坡西部海域"海马"冷泉甲烷渗漏及其海底表征[J]. 地球化学, 2020, 49(1):108-118

    Google Scholar

    ZHAO Jing, LIANG Qianyong, WEI Jiangong, et al. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea[J]. Geochimica, 2020, 49(1):108-118.]

    Google Scholar

    [21] Ling J, Guan H X, Liu L H, et al. The diversity, composition, and putative functions of gill-associated bacteria of bathymodiolin mussel and vesicomyid clam from Haima cold seep, South China Sea[J]. Microorganisms, 2020, 8(11):1699. doi: 10.3390/microorganisms8111699

    CrossRef Google Scholar

    [22] Li C Y, Gong W, Zhao L H, et al. Gravity-seismic joint inversion of lithospheric density structure in the Qiongdongnan Basin, northwest South China Sea[J]. Lithosphere, 2024, 2024(1): lithosphere_2023_124.

    Google Scholar

    [23] Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. GSA Bulletin, 1965, 76(7):803-832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2

    CrossRef Google Scholar

    [24] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publications, 1985: 312.

    Google Scholar

    [25] 朱赖民, 高志友, 尹观, 等. 南海表层沉积物的稀土和微量元素的丰度及其空间变化[J]. 岩石学报, 2007, 23(11):2963-2980 doi: 10.3969/j.issn.1000-0569.2007.11.027

    CrossRef Google Scholar

    ZHU Laimin, GAO Zhiyou, YIN Guan, et al. Content and spatial change of rare earth element and trace element of surficial sediment in the South China Sea[J]. Acta Petrologica Sinica, 2007, 23(11):2963-2980.] doi: 10.3969/j.issn.1000-0569.2007.11.027

    CrossRef Google Scholar

    [26] Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies[J]. Developments in Geochemistry, 1984, 2:63-114.

    Google Scholar

    [27] Liu S, Feng X L, Feng Z Q, et al. Geochemical evidence of methane seepage in the sediments of the Qiongdongnan Basin, South China Sea[J]. Chemical Geology, 2020, 543:119588. doi: 10.1016/j.chemgeo.2020.119588

    CrossRef Google Scholar

    [28] 李娜, 翟世奎, 刘新宇, 等. 琼东南盆地深水区LS33-1-1钻井岩心微量元素地球化学特征及其沉积环境[J]. 海洋地质与第四纪地质, 2014, 34(3):1-12

    Google Scholar

    LI Na, ZHAI Shikui, LIU Xinyu, et al. The trace elements geochemistry and depositional environment changes recorded in the core of well LS33-1-1 in deepwater area of Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2014, 34(3):1-12.]

    Google Scholar

    [29] 王轲, 翟世奎. 沉积物源判别的地球化学方法[J]. 海洋科学, 2020, 44(12):132-143

    Google Scholar

    WANG Ke, ZHAI Shikui. Geochemical methods for identification of sedimentary provenance[J]. Marine Sciences, 2020, 44(12):132-143.]

    Google Scholar

    [30] 周渝程, 曹红, 耿威, 等. 海底冷泉系统氧化还原环境重建方法研究进展[J]. 海洋地质前沿, 2023, 39(10):1-13

    Google Scholar

    ZHOU Yucheng, CAO Hong, GENG Wei, et al. Research progress on reconstruction method of redox conditions in submarine seafloor cold seeps[J]. Marine Geology Frontiers, 2023, 39(10):1-13.]

    Google Scholar

    [31] German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: the ground rules[J]. Paleoceanography, 1990, 5(5):823-833. doi: 10.1029/PA005i005p00823

    CrossRef Google Scholar

    [32] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4).

    Google Scholar

    [33] 吕荐阔, 翟世奎, 于增慧, 等. 氧化还原敏感性元素在沉积环境判别中的应用研究进展[J]. 海洋科学, 2021, 45(12):108-124

    Google Scholar

    LÜ Jiankuo, ZHAI Shikui, YU Zenghui, et al. Application and influence factors of redox-sensitive elements in a sedimentary environment[J]. Marine Sciences, 2021, 45(12):108-124.]

    Google Scholar

    [34] 汤冬杰, 史晓颖, 赵相宽, 等. Mo-U共变作为古沉积环境氧化还原条件分析的重要指标: 进展、问题与展望[J]. 现代地质, 2015, 29(1):1-13 doi: 10.3969/j.issn.1000-8527.2015.01.001

    CrossRef Google Scholar

    TANG Dongjie, SHI Xiaoying, ZHAO Xiangkuan, et al. Mo-U covariation as an important proxy for sedimentary environment redox conditions-progress, problems and prospects[J]. Geoscience, 2015, 29(1):1-13.] doi: 10.3969/j.issn.1000-8527.2015.01.001

    CrossRef Google Scholar

    [35] Algeo T J, Morford J, Cruse A. Reprint of: new applications of trace metals as proxies in marine paleoenvironments[J]. Chemical Geology, 2012, 324-325:1-5. doi: 10.1016/j.chemgeo.2012.07.012

    CrossRef Google Scholar

    [36] 张明亮, 郭伟, 沈俊, 等. 古海洋氧化还原地球化学指标研究新进展[J]. 地质科技情报, 2017, 36(4):95-106

    Google Scholar

    ZHANG Mingliang, GUO Wei, SHEN Jun, et al. New progress on geochemical indicators of ancient oceanic redox condition[J]. Geological Science and Technology Information, 2017, 36(4):95-106.]

    Google Scholar

    [37] Chen F, Hu Y, Feng D, et al. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea[J]. Chemical Geology, 2016, 443:173-181. doi: 10.1016/j.chemgeo.2016.09.029

    CrossRef Google Scholar

    [38] 蓝先洪, 申顺喜. 南黄海中部沉积岩心的稀土元素地球化学特征[J]. 海洋通报, 2002, 21(5):46-53 doi: 10.3969/j.issn.1001-6392.2002.05.007

    CrossRef Google Scholar

    LAN Xianhong, SHEN Shunxi. Geochemical characteristics of rare earth elements of sediment cores from the central South Yellow Sea[J]. Marine Science Bulletin, 2002, 21(5):46-53.] doi: 10.3969/j.issn.1001-6392.2002.05.007

    CrossRef Google Scholar

    [39] Wong C S, Boyle E, Bruland K W, et al. Trace Metals in Sea Water[M]. New York: Springer, 1983: 157-220.

    Google Scholar

    [40] Shimmield G B, Price N B. The behaviour of molybdenum and manganese during early sediment diagenesis-offshore Baja California, Mexico[J]. Marine Chemistry, 1986, 19(3):261-280. doi: 10.1016/0304-4203(86)90027-7

    CrossRef Google Scholar

    [41] Shimmield G B, Pedersen T F. The geochemistry of reactive trace metals and halogens in hemipelagic continental margin sediments[J]. Reviews in Aquatic Sciences, 1990, 3:255-279.

    Google Scholar

    [42] Sundby B, Martinez P, Gobeil C. Comparative geochemistry of cadmium, rhenium, uranium, and molybdenum in continental margin sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(11):2485-2493. doi: 10.1016/j.gca.2003.08.011

    CrossRef Google Scholar

    [43] 于哲, 邓义楠, 陈晨, 等. 海洋沉积物微量元素地球化学特征对天然气水合物勘探的指示意义[J]. 海洋地质与第四纪地质, 2022, 42(1):111-122

    Google Scholar

    YU Zhe, DENG Yinan, CHEN Chen, et al. Trace elements geochemistry of marine sediments and its implications for gas hydrate exploration[J]. Marine Geology & Quaternary Geology, 2022, 42(1):111-122.]

    Google Scholar

    [44] 邬黛黛, 杨飞, 黄霞, 等. 南海东沙海域冷泉渗漏区沉积物稀土元素地球化学特征[J]. 海洋地质与第四纪地质, 2017, 37(5):59-69

    Google Scholar

    WU Daidai, YANG Fei, HUANG Xia, et al. Rare earth elemental geochemistry of the sediments in cold-seep area in Dongsha area of South China Sea[J]. Marine Geology & Quaternary Geology, 2017, 37(5):59-69.]

    Google Scholar

    [45] Naehr T H, Eichhubl P, Orphan V J, et al. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: a comparative study[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11-13):1268-1291. doi: 10.1016/j.dsr2.2007.04.010

    CrossRef Google Scholar

    [46] Haas A, Peckmann J, Elvert M, et al. Patterns of carbonate authigenesis at the Kouilou pockmarks on the Congo deep-sea fan[J]. Marine Geology, 2010, 268(1-4):129-136. doi: 10.1016/j.margeo.2009.10.027

    CrossRef Google Scholar

    [47] Sang P N, Liu Z F. Terrigenous sediment variations in the western South China Sea and their implications to east Asian monsoon evolution during the last glacial-interglacial cycle[J]. Quaternary International, 2021, 580:1-10. doi: 10.1016/j.quaint.2021.02.008

    CrossRef Google Scholar

    [48] Nesbitt H W, Markovics G, Price R C. Chemical processes affecting alkalis and alkaline earths during continental weathering[J]. Geochimica et Cosmochimica Acta, 1980, 44(11):1659-1666. doi: 10.1016/0016-7037(80)90218-5

    CrossRef Google Scholar

    [49] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10):921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

    CrossRef Google Scholar

    [50] Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2):129-147. doi: 10.1086/629290

    CrossRef Google Scholar

    [51] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2):295-303. doi: 10.1086/648222

    CrossRef Google Scholar

    [52] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//Johnsson M J, Basu A. Processes Controlling the Composition of Clastic Sediments. Geological Society of America, 1993: 21-40.

    Google Scholar

    [53] Ma M, Chen G J, Li C, et al. Petrography and geochemistry of Oligocene to Lower Miocene sandstones in the Baiyun Sag, Pearl River Mouth Basin, South China Sea: provenance, source area weathering, and tectonic setting[J]. Geological Journal, 2019, 54(1):564-589. doi: 10.1002/gj.3207

    CrossRef Google Scholar

    [54] Wang C L, Zhang L C, Dai Y P, et al. Geochronological and geochemical constraints on the origin of clastic meta-sedimentary rocks associated with the Yuanjiacun BIF from the Lüliang complex, North China[J]. Lithos, 2015, 212-215:231-246. doi: 10.1016/j.lithos.2014.11.015

    CrossRef Google Scholar

    [55] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885):715-717. doi: 10.1038/299715a0

    CrossRef Google Scholar

    [56] 童胜琪. 珠江、红河及湄公河流域表层沉积物元素地球化学研究[D]. 上海: 同济大学, 2007

    Google Scholar

    TONG Shengqi. Element geochemistry of surface sediments in the the Pearl River, Red River and Mekong River basins[D]. Shanghai: Tongji University, 2007.]

    Google Scholar

    [57] Ma M, Chen G J, Zhang G C, et al. Geochemistry and provenance of Oligocene to Middle Miocene sandstones in the Qiongdongnan Basin, northern South China Sea[J]. Marine Geology, 2022, 447:106794. doi: 10.1016/j.margeo.2022.106794

    CrossRef Google Scholar

    [58] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7):1523-1534. doi: 10.1016/0016-7037(84)90408-3

    CrossRef Google Scholar

    [59] 何梦颖, 郑洪波, 黄湘通, 等. 长江流域沉积物黏土矿物组合特征及物源指示意义[J]. 沉积学报, 2011, 29(3):544-551

    Google Scholar

    HE Mengying, ZHENG Hongbo, HUANG Xiangtong, et al. Clay mineral assemblages in the Yangtze drainage and provenance implications[J]. Acta Sedimentologica Sinica, 2011, 29(3):544-551.]

    Google Scholar

    [60] Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climate during the Holocene[J]. Science, 2001, 294(5549):2130-2136. doi: 10.1126/science.1065680

    CrossRef Google Scholar

    [61] Bakker P, Clark P U, Golledge N R, et al. Centennial-scale Holocene climate variations amplified by Antarctic ice sheet discharge[J]. Nature, 2017, 541(7635):72-76. doi: 10.1038/nature20582

    CrossRef Google Scholar

    [62] Jiang W Y, Leroy S A G, Yang S L, et al. Synchronous strengthening of the Indian and east Asian monsoons in response to global warming since the last deglaciation[J]. Geophysical Research Letters, 2019, 46(7):3944-3952. doi: 10.1029/2019GL082084

    CrossRef Google Scholar

    [63] Liang Q Y, Hu Y, Feng D, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 124:31-41. doi: 10.1016/j.dsr.2017.04.015

    CrossRef Google Scholar

    [64] Wang X D, Li N, Feng D, et al. Using chemical compositions of sediments to constrain methane seepage dynamics: a case study from Haima cold seeps of the South China Sea[J]. Journal of Asian Earth Sciences, 2018, 168:137-144. doi: 10.1016/j.jseaes.2018.11.011

    CrossRef Google Scholar

    [65] 彭大钧, 庞雄, 陈长民, 等. 从浅水陆架走向深水陆坡: 南海深水扇系统的研究[J]. 沉积学报, 2005, 23(1):1-11 doi: 10.3969/j.issn.1000-0550.2005.01.001

    CrossRef Google Scholar

    PENG Dajun, PANG Xiong, CHEN Changmin, et al. From shallow-water shelf to deep-water slope: the study on deep-water fan systems in South China Sea[J]. Acta Sedimentologica Sinica, 2005, 23(1):1-11.] doi: 10.3969/j.issn.1000-0550.2005.01.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(341) PDF downloads(25) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint