2024 Vol. 44, No. 6
Article Contents

GAO Yu, LIU Chunyang, HU Yu, CHEN Linying, LIANG Qianyong, FENG Dong, CHEN Duofu. The impact of change in fluid seepage intensity on iron and phosphorus cycling in chimney-like seep carbonates[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 96-104. doi: 10.16562/j.cnki.0256-1492.2023100802
Citation: GAO Yu, LIU Chunyang, HU Yu, CHEN Linying, LIANG Qianyong, FENG Dong, CHEN Duofu. The impact of change in fluid seepage intensity on iron and phosphorus cycling in chimney-like seep carbonates[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 96-104. doi: 10.16562/j.cnki.0256-1492.2023100802

The impact of change in fluid seepage intensity on iron and phosphorus cycling in chimney-like seep carbonates

More Information
  • During the formation of seep carbonates, variations in fluid seepage affect the biogeochemical processes that drive the cycling of various elements, such as carbon and sulfur. However, such an influence on iron (Fe) and phosphorus (P) cycling and related biogeochemical processes remains unclear. In this study, mineral compositions, carbon and sulfur geochemistry, Fe and P component were investigated on a cross section of a chimney-like seep carbonate sample collected from the Dongsha area of the South China Sea. Results reveal that the anaerobic oxidation of biogenic methane led to the formation of the extremely 13C-depleted authigenic carbonate rocks (δ13CVPDB<−55.5‰), and the addition of enriched 18O fluids from the dissociation of gas hydrates results in abnormally high oxygen isotope composition (5.5‰–5.8‰) observed in the chimney carbonates. Combined with the dominant minerals with calcite in the outer layer of the chimney carbonates and aragonite in the inner layer, we inferred that the carbonates in the inner layer were formed at the later stage under stronger methane seepage condition. The most significant P-bearing mineral in the samples is authigenic phosphate (PAuth), and the highest content is in the inner layer of the chimney carbonates. Compared with the outer chimney sample, the inner layer has lower Fe oxide content, but higher Fe-bound P (PFe) content, indicating the formation of vivianite. Therefore, we believe that under a stronger seepage condition during the formation of seep carbonates, an enhanced intensity of methane seepage can affect the abundance of PAuth and PFe, which may favor the formation of vivianite and authigenic phosphates, thereby influencing Fe and P cycling in cold-seep environments.

  • 加载中
  • [1] Peckmann J, Thiel V. Carbon cycling at ancient methane–seeps[J]. Chemical Geology, 2004, 205(3-4):443-467. doi: 10.1016/j.chemgeo.2003.12.025

    CrossRef Google Scholar

    [2] Feng D, Qiu J W, Hu Y, et al. Cold seep systems in the South China Sea: An overview[J]. Journal of Asian Earth Sciences, 2018, 168:3-16. doi: 10.1016/j.jseaes.2018.09.021

    CrossRef Google Scholar

    [3] Lu Y, Sun X M, Lin Z Y, et al. Cold seep status archived in authigenic carbonates: Mineralogical and isotopic evidence from Northern South China Sea[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 122:95-105. doi: 10.1016/j.dsr2.2015.06.014

    CrossRef Google Scholar

    [4] Gong S G, Hu Y, Li N, et al. Environmental controls on sulfur isotopic compositions of sulfide minerals in seep carbonates from the South China Sea[J]. Journal of Asian Earth Sciences, 2018, 168:96-105. doi: 10.1016/j.jseaes.2018.04.037

    CrossRef Google Scholar

    [5] Feng D, Chen D F, Roberts H H. Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico[J]. Marine and Petroleum Geology, 2009, 26(7):1190-1198. doi: 10.1016/j.marpetgeo.2008.07.001

    CrossRef Google Scholar

    [6] Mazzini A, Svensen H, Hovland M, et al. Comparison and implications from strikingly different authigenic carbonates in a Nyegga complex pockmark, G11, Norwegian Sea[J]. Marine Geology, 2006, 231(1-4):89-102. doi: 10.1016/j.margeo.2006.05.012

    CrossRef Google Scholar

    [7] Ritger S, Carson B, Suess E. Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin[J]. GSA Bulletin, 1987, 98(2):147-156. doi: 10.1130/0016-7606(1987)98<147:MACFBS>2.0.CO;2

    CrossRef Google Scholar

    [8] Roberts H H, Aharon P. Hydrocarbon-derived carbonate buildups of the northern Gulf of Mexico continental slope: A review of submersible investigations[J]. Geo-Marine Letters, 1994, 14(2-3):135-148. doi: 10.1007/BF01203725

    CrossRef Google Scholar

    [9] Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2-4):362-407. doi: 10.1016/j.palaeo.2005.06.018

    CrossRef Google Scholar

    [10] Paull C K, Chanton J P, Neumann A C, et al. Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits: Examples from the Florida Escarpment[J]. Palaios, 1992, 7(4):361-375. doi: 10.2307/3514822

    CrossRef Google Scholar

    [11] Feng D, Chen D F. Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 122:74-83. doi: 10.1016/j.dsr2.2015.02.003

    CrossRef Google Scholar

    [12] Wirsig C, Kowsmann R O, Miller D J, et al. U/Th-dating and post-depositional alteration of a cold seep carbonate chimney from the Campos Basin offshore Brazil[J]. Marine Geology, 2012, 329-331:24-33. doi: 10.1016/j.margeo.2012.10.001

    CrossRef Google Scholar

    [13] Peng X T, Guo Z X, Chen S, et al. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply[J]. Geochimica et Cosmochimica Acta, 2017, 205:1-13. doi: 10.1016/j.gca.2017.02.010

    CrossRef Google Scholar

    [14] Takeuchi R, Matsumoto R, Ogihara S, et al. Methane-induced dolomite “chimneys” on the Kuroshima Knoll, Ryukyu islands, Japan[J]. Journal of Geochemical Exploration, 2007, 95(1-3):16-28. doi: 10.1016/j.gexplo.2007.05.008

    CrossRef Google Scholar

    [15] Magalhães V H, Pinheiro L M, Ivanov M K, et al. Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz[J]. Sedimentary Geology, 2012, 243-244:155-168. doi: 10.1016/j.sedgeo.2011.10.013

    CrossRef Google Scholar

    [16] Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea[J]. Marine Geology, 2001, 177(1-2):129-150. doi: 10.1016/S0025-3227(01)00128-1

    CrossRef Google Scholar

    [17] Novikova S A, Shnyukov Y F, Sokol E V, et al. A methane-derived carbonate build-up at a cold seep on the Crimean slope, north-western Black Sea[J]. Marine Geology, 2015, 363:160-173. doi: 10.1016/j.margeo.2015.02.008

    CrossRef Google Scholar

    [18] 苏新, 陈芳, 陆红锋, 等. 南海北部深海甲烷冷泉自生碳酸盐岩显微结构特征与流体活动关系初探[J]. 现代地质, 2008, 22(3):376-381

    Google Scholar

    SU Xin, CHEN Fang, LU Hongfeng, et al. Micro-textures of methane seep carbonates from the northern South China Sea in correlation with fluid flow[J]. Geoscience, 2008, 22(3):376-381.]

    Google Scholar

    [19] 杨克红, 初凤友, 赵建如, 等. 南海北部冷泉碳酸盐岩矿物微形貌及其意义探讨[J]. 矿物学报, 2009, 29(3):345-352

    Google Scholar

    YANG Kehong, CHU Fengyou, ZHAO Jianru, et al. Minerals’ Micro-Shape and Its Significance of Seep Carbonates in the North of the South China Sea[J]. Acta Mineralogica Sinica, 2009, 29(3):345-352.]

    Google Scholar

    [20] Liang Q Y, Hu Y, Feng D, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2017, 124:31-41. doi: 10.1016/j.dsr.2017.04.015

    CrossRef Google Scholar

    [21] 邬黛黛, 吴能友, 叶瑛, 等. 南海北部陆坡九龙甲烷礁冷泉碳酸盐岩沉积岩石学特征[J]. 热带海洋学报, 2009, 28(3):74-81

    Google Scholar

    WU Daidai, WU Nengyou, YE Ying, et al. Petrographic characteristics of authigenic carbonates from Jiulong methane reef of northern South China Sea[J]. Journal of Tropical Oceanography, 2009, 28(3):74-81.]

    Google Scholar

    [22] Guan H X, Feng D, Wu N Y, et al. Methane seepage intensities traced by biomarker patterns in authigenic carbonates from the South China Sea[J]. Organic Geochemistry, 2016, 91:109-119. doi: 10.1016/j.orggeochem.2015.11.007

    CrossRef Google Scholar

    [23] Ge L, Jiang S Y, Yang T, et al. Glycerol ether biomarkers and their carbon isotopic compositions in a cold seep carbonate chimney from the Shenhu area, northern South China Sea[J]. Chinese Science Bulletin, 2011, 56(16):1700-1707. doi: 10.1007/s11434-011-4486-z

    CrossRef Google Scholar

    [24] 佟宏鹏, 冯东, 陈多福. 南海北部冷泉碳酸盐岩的矿物、岩石及地球化学研究进展[J]. 热带海洋学报, 2012, 31(5):45-56

    Google Scholar

    TONG Hongpeng, FENG Dong, CHEN Duofu. Progresses on petrology, mineralogy and geochemistry of cold seep carbonates in the northern South China Sea[J]. Journal of Tropical Oceanography, 2012, 31(5):45-56.]

    Google Scholar

    [25] Ge L, Jiang S Y, Swennen R, et al. Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: Evidence from trace and rare earth element geochemistry[J]. Marine Geology, 2010, 277(1-4):21-30. doi: 10.1016/j.margeo.2010.08.008

    CrossRef Google Scholar

    [26] Han X Q, Suess E, Huang Y Y, et al. Jiulong methane reef: Microbial mediation of seep carbonates in the South China Sea[J]. Marine Geology, 2008, 249(3-4):243-256. doi: 10.1016/j.margeo.2007.11.012

    CrossRef Google Scholar

    [27] 陈多福, 黄永样, 冯东, 等. 南海北部冷泉碳酸盐岩和石化微生物细菌及地质意义[J]. 矿物岩石地球化学通报, 2005, 24(3):185-189

    Google Scholar

    CHEN Duofu, HUANG Yongyang, FENG Dong, et al. Seep carbonate and preserved bacteria fossils in the northern of the South China Sea and their geological implications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(3):185-189.]

    Google Scholar

    [28] 陈忠, 杨华平, 黄奇瑜, 等. 南海东沙西南海域冷泉碳酸盐岩特征及其意义[J]. 现代地质, 2008, 22(3):382-389

    Google Scholar

    CHEN Zhong, YANG Huaping, Huang C Y, et al. Diagenetic environment and implication of seep carbonate precipitations from the southwestern Dongsha Area, South China Sea[J]. Geoscience, 2008, 22(3):382-389.]

    Google Scholar

    [29] 陈忠, 黄奇瑜, 颜文, 等. 南海西沙海槽的碳酸盐结壳及其对甲烷冷泉活动的指示意义[J]. 热带海洋学报, 2007, 26(2):26-33

    Google Scholar

    CHEN Zhong, Huang C Y, YAN Wen, et al. Authigenic carbonates as evidence for seeping fluids in Xisha Trough of South China Sea[J]. Journal of Tropical Oceanography, 2007, 26(2):26-33.]

    Google Scholar

    [30] 葛璐, 蒋少涌, 杨涛, 等. 南海北部神狐海区冷泉碳酸盐岩的地球化学特征[J]. 矿物学报, 2009, 29(S1):370

    Google Scholar

    GE Lu, JIANG Shaoyong, YANG Tao, et al. Geochemical characteristics of seep carbonates from Shenhu area, northern South China Sea[J]. Acta Mineral Sinica, 2009, 29(S1):370.]

    Google Scholar

    [31] 刘关勇, 王旭东, 黄慧文, 等. 南海北部烟囱状碳酸盐岩记录的冷泉流体活动演化特征研究[J]. 地球化学, 2017, 46(6):567-579

    Google Scholar

    LIU Guanyong, WANG Xudong, HUANG Huiwen, et al. Variations in fluid sources and seepages archived in carbonate chimneys from the northern South China Sea[J]. Geochimica, 2017, 46(6):567-579.]

    Google Scholar

    [32] 韩喜球, 杨克红, 黄永样. 南海东沙东北冷泉流体的来源和性质: 来自烟囱状冷泉碳酸盐岩的证据[J]. 科学通报, 2013, 58(19): 1865-1873

    Google Scholar

    HAN Xiqiu, YANG Kehong, HUANG Yongyang. Origin and nature of cold seep in northeastern Dongsha area, South China Sea: Evidence from chimney-like seep carbonates[J]. Chinese Science Bulletin, 2013, 58(30): 3689-3697.]

    Google Scholar

    [33] 陈选博, 韩喜球. 南海东北陆坡烟囱状冷泉碳酸盐岩生长剖面的碳、氧同位素特征与生长模式[J]. 沉积学报, 2013, 31(1):50-55

    Google Scholar

    CHEN Xuanbo, HAN Xiqiu. Carbon and oxygen isotope characteristics of the growth profile of a seep carbonate chimney from the northeastern slope of the south China sea and its formation model[J]. Acta Sedimentologica Sinica, 2013, 31(1):50-55.]

    Google Scholar

    [34] 杨克红, 初凤友, 赵建如, 等. 南海北部烟囱状冷泉碳酸盐岩的沉积环境分析[J]. 海洋学报, 2013, 35(2):82-89

    Google Scholar

    YANG Kehong, CHU Fengyou, ZHAO Jianru, et al. Sedimentary environment of the cold-seep carbonate chimneys, North of the South China Sea[J]. Acta Oceanologica Sinica, 2013, 35(2):82-89.]

    Google Scholar

    [35] Sun Y D, Peckmann J, Hu Y, et al. Formation of tubular carbonates within the seabed of the northern south China sea[J]. Minerals, 2020, 10(9):768. doi: 10.3390/min10090768

    CrossRef Google Scholar

    [36] Jin M, Feng D, Huang K J, et al. Behavior of Mg isotopes during precipitation of methane-derived carbonate: Evidence from tubular seep carbonates from the South China Sea[J]. Chemical Geology, 2021, 567:120101. doi: 10.1016/j.chemgeo.2021.120101

    CrossRef Google Scholar

    [37] Hsu T W, Jiang W T, Wang Y. Authigenesis of vivianite as influenced by methane-induced sulfidization in cold-seep sediments off southwestern Taiwan[J]. Journal of Asian Earth Sciences, 2014, 89:88-97. doi: 10.1016/j.jseaes.2014.03.027

    CrossRef Google Scholar

    [38] Egger M, Rasigraf O, Sapart C J, et al. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments[J]. Environmental Science & Technology, 2015, 49(1):277-283.

    Google Scholar

    [39] Egger M, Jilbert T, Behrends T, et al. Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments[J]. Geochimica et Cosmochimica Acta, 2015, 169:217-235. doi: 10.1016/j.gca.2015.09.012

    CrossRef Google Scholar

    [40] Liu J R, Izon G, Wang J S, et al. Vivianite formation in methane-rich deep-sea sediments from the South China Sea[J]. Biogeosciences, 2018, 15(20):6329-6348. doi: 10.5194/bg-15-6329-2018

    CrossRef Google Scholar

    [41] Wu D D, Xie R, Liu J, et al. Zone of metal-driven anaerobic oxidation of methane is an important sink for phosphorus in the Taixinan Basin, South China Sea[J]. Marine Geology, 2020, 427:106268. doi: 10.1016/j.margeo.2020.106268

    CrossRef Google Scholar

    [42] Zhou J L, Du M R, Li J W, et al. Phosphorus species in deep-sea carbonate deposits: implications for phosphorus cycling in cold seep environments[J]. Minerals, 2020, 10(7):645. doi: 10.3390/min10070645

    CrossRef Google Scholar

    [43] 胡钰, 刘春阳, 陈庆王, 等. 南海东沙海域甲烷渗漏活动对不同Fe组分和P形态组成的影响[J]. 地球化学, 2023, 52(4):439-447

    Google Scholar

    HU Yu, LIU Chunyang, CHEN Qingwang, et al. Methane seepage impacts the compositions of different iron speciations and phosphorus fractions in the Dongsha area of the South China Sea[J]. Geochimica, 2023, 52(4):439-447.]

    Google Scholar

    [44] Chen Q W, Hu Y, Peckmann J, et al. The formation of authigenic phosphorus minerals in cold-seep sediments from the South China Sea: Implications for carbon cycling below the sulfate-methane transition[J]. Marine and Petroleum Geology, 2023, 155:106425. doi: 10.1016/j.marpetgeo.2023.106425

    CrossRef Google Scholar

    [45] Poulton S W, Canfield D E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates[J]. Chemical Geology, 2005, 214(3-4):209-221. doi: 10.1016/j.chemgeo.2004.09.003

    CrossRef Google Scholar

    [46] Henkel S, Kasten S, Poulton S W, et al. Determination of the stable iron isotopic composition of sequentially leached iron phases in marine sediments[J]. Chemical Geology, 2016, 421:93-102. doi: 10.1016/j.chemgeo.2015.12.003

    CrossRef Google Scholar

    [47] Alcott L J, Krause A J, Hammarlund E U, et al. Development of iron speciation reference materials for palaeoredox analysis[J]. Geostandards and Geoanalytical Research, 2020, 44(3):581-591. doi: 10.1111/ggr.12342

    CrossRef Google Scholar

    [48] Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J]. Limnology and Oceanography, 1992, 37(7):1460-1482. doi: 10.4319/lo.1992.37.7.1460

    CrossRef Google Scholar

    [49] Huerta-Diaz M A, Tovar-Sánchez A, Filippelli G, et al. A combined CDB-MAGIC method for the determination of phosphorus associated with sedimentary iron oxyhydroxides[J]. Applied Geochemistry, 2005, 20(11):2108-2115. doi: 10.1016/j.apgeochem.2005.07.009

    CrossRef Google Scholar

    [50] Chen F, Hu Y, Feng D, et al. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea[J]. Chemical Geology, 2016, 443:173-181. doi: 10.1016/j.chemgeo.2016.09.029

    CrossRef Google Scholar

    [51] Hu Y, Feng D, Peckmann J, et al. The crucial role of deep-sourced methane in maintaining the subseafloor sulfate budget[J]. Geoscience Frontiers, 2023, 14(3):101530. doi: 10.1016/j.gsf.2022.101530

    CrossRef Google Scholar

    [52] Hu Y. Pore water geochemistry and quantification of methane cycling[M]//Chen D F, Feng D. South China Sea Seeps. Singapore: Springer, 2023: 129-148.

    Google Scholar

    [53] Hu Y, Luo M, Peckmann J, et al. Quantifying the extent of authigenic carbonate formation in shallow marine sediments through a correlation between carbonate precipitation rate and sulfate flux[J]. Geophysical Research Letters, 2023, 50(19):e2023GL104296. doi: 10.1029/2023GL104296

    CrossRef Google Scholar

    [54] Bohrmann G, Greinert J, Suess E, et al. Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability[J]. Geology, 1998, 26(7):647-650. doi: 10.1130/0091-7613(1998)026<0647:ACFTCS>2.3.CO;2

    CrossRef Google Scholar

    [55] 杨克红, 于晓果, 初凤友, 等. 南海北部甲烷渗漏系统环境变化的碳、氧同位素记录[J]. 地球科学, 2016, 41(7):1206-1215

    Google Scholar

    YANG Kehong, YU Xiaoguo, CHU Fengyou, et al. Environmental changes in methane seeps recorded by carbon and oxygen isotopes in the northern South China Sea[J]. Earth Science, 2016, 41(7):1206-1215.]

    Google Scholar

    [56] Ruttenberg K C. The global phosphorus cycle[J]. Treatise on Geochemistry, 2014, 10:499-558.

    Google Scholar

    [57] Egger M, Hagens M, Sapart C J, et al. Iron oxide reduction in methane-rich deep Baltic Sea sediments[J]. Geochimica et Cosmochimica Acta, 2017, 207:256-276. doi: 10.1016/j.gca.2017.03.019

    CrossRef Google Scholar

    [58] Slomp C P, Mort H P, Jilbert T, et al. Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane[J]. PLoS One, 2013, 8(4):e62386. doi: 10.1371/journal.pone.0062386

    CrossRef Google Scholar

    [59] Egger M, Kraal P, Jilbert T, et al. Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea[J]. Biogeosciences, 2016, 13(18):5333-5355. doi: 10.5194/bg-13-5333-2016

    CrossRef Google Scholar

    [60] Kraal P, Burton E D, Rose A L, et al. Sedimentary iron–phosphorus cycling under contrasting redox conditions in a eutrophic estuary[J]. Chemical Geology, 2015, 392:19-31. doi: 10.1016/j.chemgeo.2014.11.006

    CrossRef Google Scholar

    [61] 张劼, 雷怀彦, 杨鸣, 等. 南海北部陆坡沉积物中P-S-Fe的相互作用及其对划分硫酸盐–甲烷转换带的指示意义[J]. 地学前缘, 2018, 25(3):285-293

    Google Scholar

    ZHANG Jie, LEI Huaiyan, YANG Ming, et al. The interactions of P-S-Fe in sediment from the continental slope of northern South China Sea and their implication for the sulfate-methane transition zone[J]. Earth Science Frontiers, 2018, 25(3):285-293.]

    Google Scholar

    [62] Filippelli G M. The global phosphorus cycle: past, present, and future[J]. Elements, 2008, 4(2):89-95. doi: 10.2113/GSELEMENTS.4.2.89

    CrossRef Google Scholar

    [63] März C, Riedinger N, Sena C, et al. Phosphorus dynamics around the sulphate-methane transition in continental margin sediments: Authigenic apatite and Fe(II) phosphates[J]. Marine Geology, 2018, 404:84-96. doi: 10.1016/j.margeo.2018.07.010

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(156) PDF downloads(22) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint