2024 Vol. 57, No. 6
Article Contents

LIN Mingming, ZHAO Yong, WANG Kun, ZHANG Fan, LIU Xiaolei, LI Jinxin. 2024. Early Identification of Potential Dangers of Loess Landslide Based on Multi-Source and Time Series InSAR. Northwestern Geology, 57(6): 268-277. doi: 10.12401/j.nwg.2024083
Citation: LIN Mingming, ZHAO Yong, WANG Kun, ZHANG Fan, LIU Xiaolei, LI Jinxin. 2024. Early Identification of Potential Dangers of Loess Landslide Based on Multi-Source and Time Series InSAR. Northwestern Geology, 57(6): 268-277. doi: 10.12401/j.nwg.2024083

Early Identification of Potential Dangers of Loess Landslide Based on Multi-Source and Time Series InSAR

  • Landslide disasters are frequent and widespread in mountainous areas of China, especially those potential disasters and dangers at high altitudes, where traditional technologies are less effective in identification and monitoring. Interferometric Synthetic Aperture Radar (InSAR) technology, as a ground observation technique based on a wide-area surface, can rapidly acquire minor and slow ground deformations over large areas, offering innate advantages over point monitoring techniques and playing a significant role in the identification of landslide risks. This study focuses on the Yecheng area of Xinjiang, utilizing 10 scenes of ALOS-2 data and 98 scenes of Sentinel-1 data. Based on the SBAS-InSAR method, identification and monitoring of geological hazards and potential landslide risks were conducted. By interpreting the deformation results in conjunction with optical remote sensing images, a remote sensing interpretation standard was established, revealing 22 potential landslide sites with deformation characteristics. Field verification confirmed 20 of these sites, achieving an identification accuracy rate of 91%. Detailed analysis of the time series deformation and causes at two typical risk sites based on deformation characteristics and field verification results showed a general trend of slow creep, with the potential for accelerated deformation in the event of rainfall or snowmelt. The results indicate that multi-source InSAR technology effectively identifies potential landslide risks in the Yecheng area, providing reliable data support for subsequent landslide disaster prevention and control measures.

  • 加载中
  • [1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433−454.

    Google Scholar

    HUANG Runqiu. Large-scale Landslides and Their Sliding Mechanisms in China Since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433−454.

    Google Scholar

    [2] 廖明生, 王腾. 时间序列InSAR技术与应用[M]. 北京: 科学出版社, 2014.

    Google Scholar

    LIAO Mingsheng, WANG Teng. Time Series InSAR Technology and Applications[M]. Beijing: Science Press, 2014.

    Google Scholar

    [3] 栗明明, 王艳利. 基于时序InSAR技术的地表形变监测技术研究[J]. 工程勘察, 2021, 49(7): 60−67.

    Google Scholar

    LI Mingming, WANG Yanli. Research on Ground Deformation Monitoring Based on Time Series InSAR[J]. Geotechnical Investigation & Surveying,2021,49(7):60−67.

    Google Scholar

    [4] 李万林, 周英帅. 基于D-InSAR技术的地质灾害和监测预警[J]. 测绘工程, 2021, 30(1): 66−70.

    Google Scholar

    LI Wanlin, ZHOU Yingshuai. Early Warning and Monitoring of Geohazards Based on D-InSAR Technology[J]. Engineering of Surveying and Mapping,2021,30(1):66−70.

    Google Scholar

    [5] 李晓恩, 周亮, 苏奋振, 等. InSAR技术在滑坡灾害中的应用研究进展[J]. 遥感学报, 2021, 25(2): 614−629. doi: 10.11834/jrs.20209297

    CrossRef Google Scholar

    LI Xiao’en, ZHOU Liang, SU Fenzhen, et al. Application of InSAR Technology in Landslide Hazard: Progress and Prospects[J]. National Remote Sensing Bulletin,2021,25(2):614−629. doi: 10.11834/jrs.20209297

    CrossRef Google Scholar

    [6] 孙萍萍, 张茂省, 贾俊, 等. 中国西部黄土区地质灾害调查研究进展[J]. 西北地质, 2022, 55(3): 96−107.

    Google Scholar

    SUN Pingping, ZHANG Maosheng, JIA Jun, et al. Progress in Geological Hazard Investigation and Research in Loess Regions of Western China[J]. Northwestern Geology,2022,55(3):96−107.

    Google Scholar

    [7] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报: 信息科学版, 2019, 44(7): 957−966.

    Google Scholar

    XU Qiang, DONG Xiujun, LI Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warining System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University,2019,44(7):957−966.

    Google Scholar

    [8] 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 2018, 26(6): 1534−1551.

    Google Scholar

    XU Qiang, ZHENG Guang, LI Weile, et al. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018[J]. Journal of Engineering Geology,2018,26(6):1534−1551.

    Google Scholar

    [9] 杨迁, 王雁林, 马园园. 2001~2019年中国地质灾害分布规律及引发因素分析[J]. 地质灾害与环境保护, 2020, 31(4): 43−48.

    Google Scholar

    YANG Qian, WANG Yanlin, MA Yuanyuan. Distribution Rule and Influencing Factors of Geological Disasters from 2001 to 2019 in China[J]. Geological Hazards and Environmental Protection,2020,31(4):43−48.

    Google Scholar

    [10] 杨成生, 李晓阳, 张勤, 等. 基于InSAR技术的尼泊尔辛杜帕尔乔克区震后滑坡监测与分析[J]. 武汉大学学报(信息科学版), 2023, 48(10): 1684−1696.

    Google Scholar

    YANG Chengsheng, LI Xiaoyang, ZHANG Qin, et al. Monitoring and Analysis of Post-Earthquake Landslide in Sindhu-palchowk District, Nepal Based on InSAR Technology[J]. Geomatics and Information Science of Wuhan University,2023,48(10):1684−1696.

    Google Scholar

    [11] 杨明远, 李鑫, 徐登峰. 新疆叶城县西合休乡西合休村崩塌泥石流地质灾害特征[J]. 中国金属通报, 2021, (5): 212−213.

    Google Scholar

    YANG Mingyuan, LI Xin, XU Dengfeng. Geological Disaster Characteristics of Collapse and Debris Flow in Xihexiu Village, Xihexiu Township, Yecheng Country, Xinjiang[J]. China Metal Bulletin,2021(9):212−213.

    Google Scholar

    [12] 张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别-以四川丹巴为例[J]. 武汉大学学报: 信息科学版, 2018, 43(12): 2039−2049.

    Google Scholar

    ZHANG Lu, LIAO Mingsheng, DONG Jie, et al. Early Identification of Landslide Hazards in Western Mountainous Areas Based on Time Series InSAR Analysis: A case study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University,2018,43(12):2039−2049.

    Google Scholar

    [13] 朱建军, 胡俊, 李志伟, 等. InSAR滑坡监测研究进展[J]. 测绘学报, 2022, 51(10): 2001−2019.

    Google Scholar

    ZHU Jianjun, HU Jun, LI Zhiwei, et al. Recent Progress in Landslide Monitoring with InSAR[J]. Acta Geodaetica et Cartographica Sinica,2022,51(10):2001−2019.

    Google Scholar

    [14] Berardino P, Fornaro G, Lanari R. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferometry[J]. IEEE Transaction on Geoscience and Remote Sensing,2002,11(40):2375−2383.

    Google Scholar

    [15] Feng G C, Hetland E A, Ding X L, et al. Coseismic fault slip of the 2008 Mw 7.9 Wenchuan earthquake estimated from InSAR and GPS measurements[J]. Geophysical Research Letters, 2010, 37(1).

    Google Scholar

    [16] Zebker H A, Rosen P A, Goldstein R M, et al. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake[J]. Journal of Geophysical Research Solid Earth,2002,99(B10):19617−19634.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(239) PDF downloads(53) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint