Citation: | CHEN Yapeng, TANG Li, HU Xinkai, SHENG Yuanming, ZENG Tao, CHEN Longlong, ZHAO Jianglin. 2024. Zircon U-Pb-Hf-O Isotopic Characteristics and Geological Significance of Nannihu and Shibaogou Rock Mass in Luanchuan Ore Concentration Area, Western Henan Province. Northwestern Geology, 57(6): 278-289. doi: 10.12401/j.nwg.2024084 |
The Luanchuan mining area is located at the southern edge of the North China Craton, which is rich in mineral resources and has produced a number of large-sized and super-large porphyry-silica type molybdenum and tungsten deposits. There are frequent magmatic activities in Late Mesozoic, forming several ore-bearing granite bodies and porphyry rock strains, and the controlling factors of their mineralization differences and potentials are still unclear. In this paper, we take the Mo-rich granite body of Nannihu and the ore-poor granite body of Shibaogou in the Luanchuan mining concentration area as the research objects, and based on zircon U-Pb dating and Hf-O isotope study, we reveal the age of their diagenesis and metallogeny, magma source area, and metallogeny indication significance. The zircon U-Pb ages of the Shibaogou rock and the Nannihu rock are (147.5±2.2) Ma and (139.5±1.8) Ma, respectively, and both are the products of Yanshan-age magmatism. The zircon εHf(t) values of the Shibaogou body range from −27.40~−14.51, and the two-stage mode age TDM2 values range from 2.15~2.93 Ga, with δ18O values of 5.42‰ to 6.77‰. The zircon εHf(t) values of the Nannihu body range from −16.84~−8.04, with second-stage mode age TDM2 values ranging from 1.70~2.26 Ga and δ18O values of 5.88‰~8.27‰. The zircon U-Pb ages and Hf-O isotope results indicate that the source area of the Shibaogou ore-poor magma originated from partial melting of the thickened lower crust of the Qinling orogenic belt in the context of localized extensional downstretching of post-collisional orogeny; and that the Mo-rich porphyry magma of the Nannihu is characterized by crust-mantle mixing.
[1] | 包志伟, 李创举, 祁进平, 等. 东秦岭栾川铅锌银矿田辉长岩锆石SHRIMP U-Pb年龄及成矿时代[J]. 岩石学报, 2009, 25(11): 2951−2956. BAO Zhiwei, LI Chuangju, QI Jinping, et al. SHRIMP zircon U-Pb age of the gabbro dyke in the Luanchuan Pb-Zn-Ag orefield, east Qinling orogen and its constraint on mineralization time[J]. Acta Petrologica Sinica,2009,25(11):2951−2956. |
[2] | 陈衍景, 李诺, 邓小华, 等. 秦岭造山带钼矿床成矿规律[M]. 北京: 科学出版社, 2020. CHEN Yanjing, LI Nuo, DENG Xiaohua, et al. Molybdenum Mineralization in Qinling Orogen[M]. BeiJing: Science Press, 2020. |
[3] | 陈龙龙, 唐利, 沈彦谋, 等. 秦岭造山带栾川Mo-W矿集区和柞水–山阳Cu-Mo矿集区斑岩型矿床成矿差异性对比[J]. 西北地质, 2024, 57(2): 67−89. CHEN Longlong,TANG Li,SHEN Yanmou,et al. Comparison on Metallogenic Differences of Porphyry Deposits between Luanchuan Mo-W and Zhashui-Shanyang Cu-Mo Ore-clusters in Qinling Orogenic Belt: Constraints of Magmatic Source and Metallogenic Conditions[J]. Northwestern Geology,2024,57(2):67−89. |
[4] | 付鑫宁, 唐利, 姚梅青, 等. 东秦岭黄水庵钼矿床的碳酸岩成因与地质意义: 来自痕量元素和Sr-Nd-Pb同位素的约束[J]. 成都理工大学学报(自然科学版), 2021, 48(5): 525−538. FU Xinning, TANG Li, YAO Meiqing et al. Genesis and geological significance of the Huangshui’an Mo deposit in Eastern Qinling area of China: Constraints From trace elements and Sr-Nd-Pb isotopes[J]. Journal of Chengdu University of Technology,2021,48(5):525−538. |
[5] | 侯增谦, 杨志明, 王瑞, 等. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用[J]. 地学前缘, 2020, 27(2): 20−44. HOU Zengqian, YANG Zhiming, WANG Rui, et al. Further discussion on porphyry Cu-Mo-Au deposit formation in Chinese mainland[J]. Earth Science Frontiers,2020,27(2):20−44. |
[6] | 李欢, 邹灏, 陈恒强, 等. 云南腾冲箐口钼多金属矿床成矿地质特征及找矿标志[J]. 成都理工大学学报(自然科学版), 2018, 45(3): 313−324. LI Huan, ZOU Hao, CHEN Hengqiang, et al. Geological characteristics of mineralization and prospecting indicators of Jingkou Mo deposit in Tengchong, Yunnan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2018,45(3):313−324. |
[7] | 李诺. 斑岩型钼矿: 新类型的识别及成矿控制因素[J]. 矿物岩石地球化学通报, 2022, 41(1): 113−126+7. LI Nuo. Porphyry Mo Deposits: New Sub-Types and Ore-Controlling Factors[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2022,41(1):113−126+7. |
[8] | 李永峰, 毛景文, 白凤军, 等. 东秦岭南泥湖钼(钨)矿田Re-Os同位素年龄及其地质意义[J]. 地质论评, 2003, 49(6): 652−659. LI Yongfeng, MAO Jingwen, BAI Fengjun, et al. Re–Os isotopic dating of molybdenites in the Nannihu molybdenum (tungsten) ore field in the eastern Qinling and its geological significance[J]. Geological Review,2003,49(6):652−659. |
[9] | 李平, 陈隽璐, 张越, 等. 商丹俯冲增生带南缘土地沟–池沟地区侵入岩形成时代及地质意义[J]. 西北地质, 2023, 56(2): 10−27. LI Ping, CHEN Junlu, ZHANG Yue, et al. The Formation Age of Intrusions from Tudigou–Chigou Region in Southern Margin of Shangdan Subduction–Accretion Belt and Its Geological Significance[J]. Northwestern Geology,2023,56(2):10−27. |
[10] | 李永峰, 毛景文, 胡华斌, 等. 东秦岭钼矿类型、特征、成矿时代及其地球动力学背景[J]. 矿床地质, 2005, 51(3): 292−304. LI Yongfeng, MAO Jingwen, HU Huabin, et al. Geology distribution types and tectonic settings of Mesozoic molybdenum deposits in East Qinling area[J]. Mineral Deposits,2005,51(3):292−304. |
[11] | 罗铭玖, 林潜龙, 卢欣祥, 等. 东秦岭含钼花岗岩的地质特征[J]. 河南地质, 1993, 11(1): 2−8. LUO Mingjiu, LIN Qianlong, LU Xinxiang, et al. Geological characteristics of molybdenum-bearing granites in the East Qinling Mountains[J]. Henan Geology,1993,11(1):2−8. |
[12] | 罗铮娴, 黄小龙, 王雪, 等. 华北克拉通崤山太华群TTG质片麻岩年代学与地球化学特征: 岩石成因机制探讨[J]. 大地构造与成矿学, 2018, 42(2): 332−347. LUO Zhengxian, HUANG Xiaolong, WANG Xue, et al. Geochronology and Geochemistry of the TTG Gneisses from the Taihua Group in the Xiaoshan Area, North China Craton: Constraints on Petrogenesis[J]. Geotectonica et Metallogenia,2018,42(2):332−347. |
[13] | 牛腾, 倪志耀, 孟宝航, 等. 冀北康保芦家营巨斑状花岗岩: 华北克拉通北缘中段1.3~1.2 Ga B. P. 伸展—裂解事件的地质记录[J]. 成都理工大学学报(自然科学版), 2023, 50(4): 486−503. NIU Teng, NI Zhiyao, MENG Baohang, et al. The Lujiaying megaporphyric granite in Kangbao area, North Hebei: A geological record of extension and breakup event at 1.3~1.2 Ga B. P. in the central segment of northern margin of North China Craton[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2023,50(4):486−503. |
[14] | 孙卫东, 李聪颖, 凌明星, 等. 钼的地球化学性质与成矿[J]. 岩石学报, 2015, 31(7): 1807−1817. SUN Weidong, LI Congying, LING Mingxing, et al. The geochemical behavior of molybdnum and mineralization[J]. Acta Petrologica Sinica,2015,31(7):1807−1817. |
[15] | 冉亚洲, 陈涛, 梁文天, 等. 西秦岭郎木寺组火山岩锆石U–Pb年龄及其构造意义[J]. 西北地质, 2024, 57(1): 110−121. RAN Yazhou,CHEN Tao,LIANG Wentian,et al. Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology,2024,57(1):110−121. |
[16] | 唐利, 张寿庭, 曹华文, 等. 河南栾川矿集区钼钨铅锌银多金属矿成矿系统及演化特征[J]. 成都理工大学学报(自然科学版), 2014, 41(3): 356−368. TANG Li, ZHANG Shouting, CAO Huawen, et al. Metallogenic system and evolutionary characteristics of Mo-W-Pb-Zn-Ag polymetallic metallogenic concentration area in Luanchuan, Henan[J]. [J]. Journal of Chengdu University of Technology (Science & Technology Edition),2014,41(3):356−368. |
[17] | 田浩浩, 张寿庭, 曹华文, 等. 豫西赤土店铅锌矿床闪锌矿微量元素地球化学特征[J]. 矿物岩石地球化学通报, 2015, 34(2): 334−342. TIAN Haohao, ZHANG Shouting, CAO Huawen, et al. Geochemical Characteristics of Trace Elements of Sphalerite in the Chitudian Pb-Zn Deposit, West Henan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2015,34(2):334−342. |
[18] | 王汉辉, 唐利, 杨勃畅, 等. 东秦岭黄水庵碳酸岩型Mo-REE矿床方解石地球化学特征和氟碳铈矿U-Th-Pb年龄及其意义[J]. 西北地质, 2023, 56(1): 48−62. WANG Hanhui, TANG Li, YANG Bochang, et al. Geochemical Characteristics of Calcite and Bastnäsite U-Th-Pb Age of the Huangshui’an Carbonatite-hosted Mo-REE Deposit, Eastern Qinling[J]. Northwestern Geology,2023,56(1):48−62. |
[19] | 王梓桐, 王根厚, 张维杰, 等. 阿拉善地块南缘志留纪花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 586−600. WANG Zitong, WANG Genhou, ZHANG Weijie, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Silurian granodiorite in the southern margin of Alxa Block, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2022,49(5):586−600. |
[20] | 熊万宇康, 赵梦琪, 于淼, 等. 造山带洋陆转换过程与岩浆作用: 以东昆仑都兰地区古生代花岗岩为例[J]. 西北地质, 2023, 56(6): 113−139. XIONG Wanyukang, ZHAO Mengqi, YU Miao, et al. Ocean−Continent Transition Process and Magmatism in Orogenic Belts: A Case Study of Paleozoic Granites in the Dulan Area of East Kunlun[J]. Northwestern Geology, 2023, 56(6): 113−139. |
[21] | 杨航, 秦克章, 吴鹏, 等. 斑岩铜-钼-金矿床: 构造环境、成矿作用与控制因素[J]. 矿床地质, 2023, 42(1): 128−156. YANG Hang, QIN Kezhang, WU Peng, et al. Tectonic setting, mineralization and ore-controlling factors of porphyry Cu-Mo-Au deposits[J]. Mineral Deposits,2023,42(1):128−156. |
[22] | 杨荣勇, 徐兆文, 任启江. 东秦岭地区石宝沟和火神庙岩体的时代及岩浆物质来源[J]. 矿物岩石地球化学通报, 1997, 16(1): 17−20. YANG Rongyong, XU Zhaowen, REN Qijiang. Ages and Magma Sources of Shibaogou and Huoshenmiao Complexes in East Qinling[J]. Bulletin of Mineralogy, Petrology and Geochemistry,1997,16(1):17−20. |
[23] | 杨阳, 王晓霞, 柯昌辉, 等. 豫西南泥湖矿集区石宝沟花岗岩体的锆石U-Pb年龄、岩石地球化学及Hf同位素组成[J]. 中国地质, 2012, 39(6): 1525−1542. YANG Yang, WANG Xiaoxia, KE Changhui, et al. Zircon U-Pb age, geochemistry and Hf isotopic compositions of Shibaogou granitoid pluton in the Nannihu ore district, western Henan Province[J]. Geology in China,2012,39(6):1525−1542. |
[24] | 杨正良, 任龙, 邓明国, 等. 河南栾川石宝沟Mo矿床岩体年龄及氧逸度的成矿意义[J]. 有色金属, 2023, 75(5): 134−145. YANG Zhengliang, REN Long, DENG Mingguo, et al. Pluton age and minerallogenic significance of oxygen fugacity of Shibaogou Mo deposit in Luanchuan, Henan[J]. Nonferrous Metal,2023,75(5):134−145. |
[25] | 张红亮. 栾川矿集区东鱼库钼钨多金属矿床成矿地质特征与成矿模式[D]. 北京: 中国地质大学(北京), 2014. ZHANG Hongliang. Ore-Forming Geological Characteristics and Metallogenic Model of the Dongyuku Mo-W Polymetallic Deposit, Luanchuan Ore Area[D]. Beijing: China University of Geosciences (Beijing), 2014. |
[26] | 张云辉, 张寿庭, 王世炎, 等. 东秦岭南泥湖钼(钨)矿床和秋树湾铜(钼)矿床成岩成矿特征对比研究[J]. 地质与勘探, 2014, 50(4): 700−711. ZHANG Yunhui, ZHANG Shouting, WANG Shiyan, et al. Comparison of petrologic and metallogenic characteristics between the Nannihu Mo(W)deposit and Qiushuwan Cu(Mo)deposit, east Qinling[J]. Geology and Exploration,2014,50(4):700−711. |
[27] | 朱赖民, 张国伟, 李犇, 等. 与秦岭造山有关的几个关键成矿事件及其矿床实例[J]. 西北大学学报(自然科学版), 2008, 82(3): 204−220. ZHU Laimin,ZHANG Guowei,LI Ben,et al. Some key metall ogenetic events of Qinling orgenic belt and their deposit examples[J]. [J]. Journal of Northwest University (Nature Science Edition),2008,82(3):204−220. |
[28] | Cao Huawen, Zhang Shouting, Santosh M, et al. The Luanchuan Mo-W-Pb-Zn-Ag magmatic-hydrothermal system in the East Qinling metallogenic belt, China: Constrains on metallogenesis from C-H-O-S-Pb isotope compositions and Rb–Sr isochron ages[J]. Journal of Asian Earth Sciences,2015,111:751−780. |
[29] | Chen Yanjing, Pirajno Franco, Li Nuo, et al. Molybdenum deposits in China[J]. Ore Geology Reviews,2017,81:401−404. |
[30] | Dong Yunpeng, Santosh M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research,2016,29(1):1−40. |
[31] | Guo Bo, Yan Changhai, Zhang Shouting, et al. Geochemical and geological characteristics of the granitic batholith and Yuku concealed Mo–W deposit at the southern margin of the North China Craton[J]. Geological Journal,2020,55:95−116. doi: 10.1002/gj.3372 |
[32] | Hu Xinkai, Tang Li, Zhang Shoutingting, et al. In situ trace element and sulfur isotope of pyrite constrain ore genesis in the Shapoling Molybdenum Deposit, East Qinling Orogen, China[J]. Ore Geology Reviews,2019,105:123−136. doi: 10.1016/j.oregeorev.2018.12.019 |
[33] | Hu Xinkai, Tang Li, Zhang Shouting, et al. Formation of the Qiyugou porphyry gold system in East Qinling, China: insights from timing and source characteristics of Late Mesozoic magmatism[J]. Journal of the Geological Society, 179(4), jgs2020-253. |
[34] | Hou Zengqian, Duan Lianfeng, Lu Yongjun, et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen[J]. Economic Geology,2015,110:1541−1575. doi: 10.2113/econgeo.110.6.1541 |
[35] | Kemp A I S, Hawkesworth C J, Foster G L, et al. Magmatic and Crustal Different History of Granitic Rocks from Hf-O Isotopes in Zircon[J]. Science,2007,315:980−983. doi: 10.1126/science.1136154 |
[36] | Li Nuo, Chen YanJing, Santosh M, et al. Late Mesozoic granitoids in the Qinling Orogen, Central China, and tectonic significance[J]. Earth-Science Reviews,2018,182:141−173. doi: 10.1016/j.earscirev.2018.05.004 |
[37] | Li Weiran. Costa Fidel A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets[J]. Geochimica et Cosmochimica Acta,2020,269:203−222. doi: 10.1016/j.gca.2019.10.035 |
[38] | Li Xianhua, Tang Guoqiang, Gong Bing, et al. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin,2013,58:4647−4654. doi: 10.1007/s11434-013-5932-x |
[39] | Liu Dunyi, Wilde Simon A, Wan Yusheng, et al. Combined U-Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean-Early Neoarchean[J]. Chemical Geology,2009,261(1−2):140−154. |
[40] | Qin Jiangfeng, Lai Shaocong, Li Yongfei. Multi-stage granitic magmatism during exhumation of subducted continental lithosphere: evidence from the Wulong pluton, South Qinling[J]. Gondwana Research,2013,24:1108−1126. doi: 10.1016/j.gr.2013.02.005 |
[41] | Rollinson Hugh R. Using Geochemical Data: Evaluation, Presentation, and Interpretation[M]. Longman Scientific & Technical, 1993. |
[42] | Tang Li, Santosh M, Dong Yunpeng, et al. Early Paleozoic tectonic evolution of the North Qinling orogenic belt: Evidence from geochemistry, phase equilibrium modeling and geochronology of metamorphosed mafic rocks from the Songshugou ophiolite[J]. Gondwana Research,2016,30:48−64. doi: 10.1016/j.gr.2014.10.006 |
[43] | Tang Li, Zhao Yu, Zhang Shouting, et al. Origin and evolution of a porphyry-breccia system: Evidence from zircon U-Pb, molybdenite Re-Os geochronology, in situ sulfur isotope and trace elements of the Qiyugou deposit, China[J]. Gondwana Research,2021,89:88−104. |
[44] | Tang Li, Wagner Thomas, Fusswinkel Tobias, et al. Fluid inclusion evidence for the magmatic-hydrothermal evolution of closely linked porphyry Au, porphyry Mo, and barren systems, East Qinling, China[J]. GSA Bulletin,2022,134:1529−1548. doi: 10.1130/B36170.1 |
[45] | Valley John W. Oxygen Isotopes in Zircon[J]. Reviews in Mineralogy & Geochemistry,2003,53(1):343−385. |
[46] | Xu Yunchou, Wang Gongwen, Gao Meng, et al. Genesis of the Shibaogou Mo-Pb-Zn deposit in the Luanchuan ore district, China: Constraints from geochronology, fluid inclusion, and H-O-S-Pb isotopes[J]. Geoscience Frontiers,2023,10:1032183. doi: 10.3389/feart.2022.1032183 |
[47] | Xue Fei, Wang Gongwen, Santosh M, et al. Geochemistry and geochronology of ore-bearing and barren intrusions in the Luanchuan ore fields of East Qinling metallogenic belt, China: Diverse tectonic evolution and implications for mineral exploration[J]. Journal of Asian Earth Sciences, 2018, 157. |
[48] | Zhang Yunhui, Cao Huawen, Xu Mo, et al. Petrogenesis of the late Mesozoic highly fractionated I-type granites in the Luanchuan district: implications for the tectono-magmatic evolution of eastern Qinling[J]. Geosciences Journal,2018,22(2):253−272. doi: 10.1007/s12303-017-0036-2 |
(a) Tectonic framework of the Qinling Orogen and (b) geological map of the Luanchuan ore cluster
Field photo, photomicrographsof Shibaogou rock and Nannihu rock
(a, c) Zircon CL characteristics, (b, d) zircon U-Pb age harmonic diagram of Shibaogou rock and Nannihu rock
(a) εHf(t) histogram of Shibaogou rock, (b) TDM2 histogram of Shibaogou rock, (c) εHf(t) histogram of Nannihu rock, (d) TDM2 histogram of Nannihu rock
(a) Zircon δ18O histogram of Shibaogou rock, (b) zircon δ18O histogram of Nannihu rock
εHf(t)-age diagrams of Shibaogou and Nannihu rocks