2024 Vol. 57, No. 6
Article Contents

CHEN Yapeng, TANG Li, HU Xinkai, SHENG Yuanming, ZENG Tao, CHEN Longlong, ZHAO Jianglin. 2024. Zircon U-Pb-Hf-O Isotopic Characteristics and Geological Significance of Nannihu and Shibaogou Rock Mass in Luanchuan Ore Concentration Area, Western Henan Province. Northwestern Geology, 57(6): 278-289. doi: 10.12401/j.nwg.2024084
Citation: CHEN Yapeng, TANG Li, HU Xinkai, SHENG Yuanming, ZENG Tao, CHEN Longlong, ZHAO Jianglin. 2024. Zircon U-Pb-Hf-O Isotopic Characteristics and Geological Significance of Nannihu and Shibaogou Rock Mass in Luanchuan Ore Concentration Area, Western Henan Province. Northwestern Geology, 57(6): 278-289. doi: 10.12401/j.nwg.2024084

Zircon U-Pb-Hf-O Isotopic Characteristics and Geological Significance of Nannihu and Shibaogou Rock Mass in Luanchuan Ore Concentration Area, Western Henan Province

More Information
  • The Luanchuan mining area is located at the southern edge of the North China Craton, which is rich in mineral resources and has produced a number of large-sized and super-large porphyry-silica type molybdenum and tungsten deposits. There are frequent magmatic activities in Late Mesozoic, forming several ore-bearing granite bodies and porphyry rock strains, and the controlling factors of their mineralization differences and potentials are still unclear. In this paper, we take the Mo-rich granite body of Nannihu and the ore-poor granite body of Shibaogou in the Luanchuan mining concentration area as the research objects, and based on zircon U-Pb dating and Hf-O isotope study, we reveal the age of their diagenesis and metallogeny, magma source area, and metallogeny indication significance. The zircon U-Pb ages of the Shibaogou rock and the Nannihu rock are (147.5±2.2) Ma and (139.5±1.8) Ma, respectively, and both are the products of Yanshan-age magmatism. The zircon εHf(t) values of the Shibaogou body range from −27.40~−14.51, and the two-stage mode age TDM2 values range from 2.15~2.93 Ga, with δ18O values of 5.42‰ to 6.77‰. The zircon εHf(t) values of the Nannihu body range from −16.84~−8.04, with second-stage mode age TDM2 values ranging from 1.70~2.26 Ga and δ18O values of 5.88‰~8.27‰. The zircon U-Pb ages and Hf-O isotope results indicate that the source area of the Shibaogou ore-poor magma originated from partial melting of the thickened lower crust of the Qinling orogenic belt in the context of localized extensional downstretching of post-collisional orogeny; and that the Mo-rich porphyry magma of the Nannihu is characterized by crust-mantle mixing.

  • 加载中
  • [1] 包志伟, 李创举, 祁进平, 等. 东秦岭栾川铅锌银矿田辉长岩锆石SHRIMP U-Pb年龄及成矿时代[J]. 岩石学报, 2009, 25(11): 2951−2956.

    Google Scholar

    BAO Zhiwei, LI Chuangju, QI Jinping, et al. SHRIMP zircon U-Pb age of the gabbro dyke in the Luanchuan Pb-Zn-Ag orefield, east Qinling orogen and its constraint on mineralization time[J]. Acta Petrologica Sinica,2009,25(11):2951−2956.

    Google Scholar

    [2] 陈衍景, 李诺, 邓小华, 等. 秦岭造山带钼矿床成矿规律[M]. 北京: 科学出版社, 2020.

    Google Scholar

    CHEN Yanjing, LI Nuo, DENG Xiaohua, et al. Molybdenum Mineralization in Qinling Orogen[M]. BeiJing: Science Press, 2020.

    Google Scholar

    [3] 陈龙龙, 唐利, 沈彦谋, 等. 秦岭造山带栾川Mo-W矿集区和柞水–山阳Cu-Mo矿集区斑岩型矿床成矿差异性对比[J]. 西北地质, 2024, 57(2): 67−89.

    Google Scholar

    CHEN Longlong,TANG Li,SHEN Yanmou,et al. Comparison on Metallogenic Differences of Porphyry Deposits between Luanchuan Mo-W and Zhashui-Shanyang Cu-Mo Ore-clusters in Qinling Orogenic Belt: Constraints of Magmatic Source and Metallogenic Conditions[J]. Northwestern Geology,2024,57(2):67−89.

    Google Scholar

    [4] 付鑫宁, 唐利, 姚梅青, 等. 东秦岭黄水庵钼矿床的碳酸岩成因与地质意义: 来自痕量元素和Sr-Nd-Pb同位素的约束[J]. 成都理工大学学报(自然科学版), 2021, 48(5): 525−538.

    Google Scholar

    FU Xinning, TANG Li, YAO Meiqing et al. Genesis and geological significance of the Huangshui’an Mo deposit in Eastern Qinling area of China: Constraints From trace elements and Sr-Nd-Pb isotopes[J]. Journal of Chengdu University of Technology,2021,48(5):525−538.

    Google Scholar

    [5] 侯增谦, 杨志明, 王瑞, 等. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用[J]. 地学前缘, 2020, 27(2): 20−44.

    Google Scholar

    HOU Zengqian, YANG Zhiming, WANG Rui, et al. Further discussion on porphyry Cu-Mo-Au deposit formation in Chinese mainland[J]. Earth Science Frontiers,2020,27(2):20−44.

    Google Scholar

    [6] 李欢, 邹灏, 陈恒强, 等. 云南腾冲箐口钼多金属矿床成矿地质特征及找矿标志[J]. 成都理工大学学报(自然科学版), 2018, 45(3): 313−324.

    Google Scholar

    LI Huan, ZOU Hao, CHEN Hengqiang, et al. Geological characteristics of mineralization and prospecting indicators of Jingkou Mo deposit in Tengchong, Yunnan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2018,45(3):313−324.

    Google Scholar

    [7] 李诺. 斑岩型钼矿: 新类型的识别及成矿控制因素[J]. 矿物岩石地球化学通报, 2022, 41(1): 113−126+7.

    Google Scholar

    LI Nuo. Porphyry Mo Deposits: New Sub-Types and Ore-Controlling Factors[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2022,41(1):113−126+7.

    Google Scholar

    [8] 李永峰, 毛景文, 白凤军, 等. 东秦岭南泥湖钼(钨)矿田Re-Os同位素年龄及其地质意义[J]. 地质论评, 2003, 49(6): 652−659.

    Google Scholar

    LI Yongfeng, MAO Jingwen, BAI Fengjun, et al. Re–Os isotopic dating of molybdenites in the Nannihu molybdenum (tungsten) ore field in the eastern Qinling and its geological significance[J]. Geological Review,2003,49(6):652−659.

    Google Scholar

    [9] 李平, 陈隽璐, 张越, 等. 商丹俯冲增生带南缘土地沟–池沟地区侵入岩形成时代及地质意义[J]. 西北地质, 2023, 56(2): 10−27.

    Google Scholar

    LI Ping, CHEN Junlu, ZHANG Yue, et al. The Formation Age of Intrusions from Tudigou–Chigou Region in Southern Margin of Shangdan Subduction–Accretion Belt and Its Geological Significance[J]. Northwestern Geology,2023,56(2):10−27.

    Google Scholar

    [10] 李永峰, 毛景文, 胡华斌, 等. 东秦岭钼矿类型、特征、成矿时代及其地球动力学背景[J]. 矿床地质, 2005, 51(3): 292−304.

    Google Scholar

    LI Yongfeng, MAO Jingwen, HU Huabin, et al. Geology distribution types and tectonic settings of Mesozoic molybdenum deposits in East Qinling area[J]. Mineral Deposits,2005,51(3):292−304.

    Google Scholar

    [11] 罗铭玖, 林潜龙, 卢欣祥, 等. 东秦岭含钼花岗岩的地质特征[J]. 河南地质, 1993, 11(1): 2−8.

    Google Scholar

    LUO Mingjiu, LIN Qianlong, LU Xinxiang, et al. Geological characteristics of molybdenum-bearing granites in the East Qinling Mountains[J]. Henan Geology,1993,11(1):2−8.

    Google Scholar

    [12] 罗铮娴, 黄小龙, 王雪, 等. 华北克拉通崤山太华群TTG质片麻岩年代学与地球化学特征: 岩石成因机制探讨[J]. 大地构造与成矿学, 2018, 42(2): 332−347.

    Google Scholar

    LUO Zhengxian, HUANG Xiaolong, WANG Xue, et al. Geochronology and Geochemistry of the TTG Gneisses from the Taihua Group in the Xiaoshan Area, North China Craton: Constraints on Petrogenesis[J]. Geotectonica et Metallogenia,2018,42(2):332−347.

    Google Scholar

    [13] 牛腾, 倪志耀, 孟宝航, 等. 冀北康保芦家营巨斑状花岗岩: 华北克拉通北缘中段1.3~1.2 Ga B. P. 伸展—裂解事件的地质记录[J]. 成都理工大学学报(自然科学版), 2023, 50(4): 486−503.

    Google Scholar

    NIU Teng, NI Zhiyao, MENG Baohang, et al. The Lujiaying megaporphyric granite in Kangbao area, North Hebei: A geological record of extension and breakup event at 1.3~1.2 Ga B. P. in the central segment of northern margin of North China Craton[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2023,50(4):486−503.

    Google Scholar

    [14] 孙卫东, 李聪颖, 凌明星, 等. 钼的地球化学性质与成矿[J]. 岩石学报, 2015, 31(7): 1807−1817.

    Google Scholar

    SUN Weidong, LI Congying, LING Mingxing, et al. The geochemical behavior of molybdnum and mineralization[J]. Acta Petrologica Sinica,2015,31(7):1807−1817.

    Google Scholar

    [15] 冉亚洲, 陈涛, 梁文天, 等. 西秦岭郎木寺组火山岩锆石U–Pb年龄及其构造意义[J]. 西北地质, 2024, 57(1): 110−121.

    Google Scholar

    RAN Yazhou,CHEN Tao,LIANG Wentian,et al. Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology,2024,57(1):110−121.

    Google Scholar

    [16] 唐利, 张寿庭, 曹华文, 等. 河南栾川矿集区钼钨铅锌银多金属矿成矿系统及演化特征[J]. 成都理工大学学报(自然科学版), 2014, 41(3): 356−368.

    Google Scholar

    TANG Li, ZHANG Shouting, CAO Huawen, et al. Metallogenic system and evolutionary characteristics of Mo-W-Pb-Zn-Ag polymetallic metallogenic concentration area in Luanchuan, Henan[J]. [J]. Journal of Chengdu University of Technology (Science & Technology Edition),2014,41(3):356−368.

    Google Scholar

    [17] 田浩浩, 张寿庭, 曹华文, 等. 豫西赤土店铅锌矿床闪锌矿微量元素地球化学特征[J]. 矿物岩石地球化学通报, 2015, 34(2): 334−342.

    Google Scholar

    TIAN Haohao, ZHANG Shouting, CAO Huawen, et al. Geochemical Characteristics of Trace Elements of Sphalerite in the Chitudian Pb-Zn Deposit, West Henan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2015,34(2):334−342.

    Google Scholar

    [18] 王汉辉, 唐利, 杨勃畅, 等. 东秦岭黄水庵碳酸岩型Mo-REE矿床方解石地球化学特征和氟碳铈矿U-Th-Pb年龄及其意义[J]. 西北地质, 2023, 56(1): 48−62.

    Google Scholar

    WANG Hanhui, TANG Li, YANG Bochang, et al. Geochemical Characteristics of Calcite and Bastnäsite U-Th-Pb Age of the Huangshui’an Carbonatite-hosted Mo-REE Deposit, Eastern Qinling[J]. Northwestern Geology,2023,56(1):48−62.

    Google Scholar

    [19] 王梓桐, 王根厚, 张维杰, 等. 阿拉善地块南缘志留纪花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 586−600.

    Google Scholar

    WANG Zitong, WANG Genhou, ZHANG Weijie, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Silurian granodiorite in the southern margin of Alxa Block, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2022,49(5):586−600.

    Google Scholar

    [20] 熊万宇康, 赵梦琪, 于淼, 等. 造山带洋陆转换过程与岩浆作用: 以东昆仑都兰地区古生代花岗岩为例[J]. 西北地质, 2023, 56(6): 113−139.

    Google Scholar

    XIONG Wanyukang, ZHAO Mengqi, YU Miao, et al. Ocean−Continent Transition Process and Magmatism in Orogenic Belts: A Case Study of Paleozoic Granites in the Dulan Area of East Kunlun[J]. Northwestern Geology, 2023, 56(6): 113−139.

    Google Scholar

    [21] 杨航, 秦克章, 吴鹏, 等. 斑岩铜-钼-金矿床: 构造环境、成矿作用与控制因素[J]. 矿床地质, 2023, 42(1): 128−156.

    Google Scholar

    YANG Hang, QIN Kezhang, WU Peng, et al. Tectonic setting, mineralization and ore-controlling factors of porphyry Cu-Mo-Au deposits[J]. Mineral Deposits,2023,42(1):128−156.

    Google Scholar

    [22] 杨荣勇, 徐兆文, 任启江. 东秦岭地区石宝沟和火神庙岩体的时代及岩浆物质来源[J]. 矿物岩石地球化学通报, 1997, 16(1): 17−20.

    Google Scholar

    YANG Rongyong, XU Zhaowen, REN Qijiang. Ages and Magma Sources of Shibaogou and Huoshenmiao Complexes in East Qinling[J]. Bulletin of Mineralogy, Petrology and Geochemistry,1997,16(1):17−20.

    Google Scholar

    [23] 杨阳, 王晓霞, 柯昌辉, 等. 豫西南泥湖矿集区石宝沟花岗岩体的锆石U-Pb年龄、岩石地球化学及Hf同位素组成[J]. 中国地质, 2012, 39(6): 1525−1542.

    Google Scholar

    YANG Yang, WANG Xiaoxia, KE Changhui, et al. Zircon U-Pb age, geochemistry and Hf isotopic compositions of Shibaogou granitoid pluton in the Nannihu ore district, western Henan Province[J]. Geology in China,2012,39(6):1525−1542.

    Google Scholar

    [24] 杨正良, 任龙, 邓明国, 等. 河南栾川石宝沟Mo矿床岩体年龄及氧逸度的成矿意义[J]. 有色金属, 2023, 75(5): 134−145.

    Google Scholar

    YANG Zhengliang, REN Long, DENG Mingguo, et al. Pluton age and minerallogenic significance of oxygen fugacity of Shibaogou Mo deposit in Luanchuan, Henan[J]. Nonferrous Metal,2023,75(5):134−145.

    Google Scholar

    [25] 张红亮. 栾川矿集区东鱼库钼钨多金属矿床成矿地质特征与成矿模式[D]. 北京: 中国地质大学(北京), 2014.

    Google Scholar

    ZHANG Hongliang. Ore-Forming Geological Characteristics and Metallogenic Model of the Dongyuku Mo-W Polymetallic Deposit, Luanchuan Ore Area[D]. Beijing: China University of Geosciences (Beijing), 2014.

    Google Scholar

    [26] 张云辉, 张寿庭, 王世炎, 等. 东秦岭南泥湖钼(钨)矿床和秋树湾铜(钼)矿床成岩成矿特征对比研究[J]. 地质与勘探, 2014, 50(4): 700−711.

    Google Scholar

    ZHANG Yunhui, ZHANG Shouting, WANG Shiyan, et al. Comparison of petrologic and metallogenic characteristics between the Nannihu Mo(W)deposit and Qiushuwan Cu(Mo)deposit, east Qinling[J]. Geology and Exploration,2014,50(4):700−711.

    Google Scholar

    [27] 朱赖民, 张国伟, 李犇, 等. 与秦岭造山有关的几个关键成矿事件及其矿床实例[J]. 西北大学学报(自然科学版), 2008, 82(3): 204−220.

    Google Scholar

    ZHU Laimin,ZHANG Guowei,LI Ben,et al. Some key metall ogenetic events of Qinling orgenic belt and their deposit examples[J]. [J]. Journal of Northwest University (Nature Science Edition),2008,82(3):204−220.

    Google Scholar

    [28] Cao Huawen, Zhang Shouting, Santosh M, et al. The Luanchuan Mo-W-Pb-Zn-Ag magmatic-hydrothermal system in the East Qinling metallogenic belt, China: Constrains on metallogenesis from C-H-O-S-Pb isotope compositions and Rb–Sr isochron ages[J]. Journal of Asian Earth Sciences,2015,111:751−780.

    Google Scholar

    [29] Chen Yanjing, Pirajno Franco, Li Nuo, et al. Molybdenum deposits in China[J]. Ore Geology Reviews,2017,81:401−404.

    Google Scholar

    [30] Dong Yunpeng, Santosh M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research,2016,29(1):1−40.

    Google Scholar

    [31] Guo Bo, Yan Changhai, Zhang Shouting, et al. Geochemical and geological characteristics of the granitic batholith and Yuku concealed Mo–W deposit at the southern margin of the North China Craton[J]. Geological Journal,2020,55:95−116. doi: 10.1002/gj.3372

    CrossRef Google Scholar

    [32] Hu Xinkai, Tang Li, Zhang Shoutingting, et al. In situ trace element and sulfur isotope of pyrite constrain ore genesis in the Shapoling Molybdenum Deposit, East Qinling Orogen, China[J]. Ore Geology Reviews,2019,105:123−136. doi: 10.1016/j.oregeorev.2018.12.019

    CrossRef Google Scholar

    [33] Hu Xinkai, Tang Li, Zhang Shouting, et al. Formation of the Qiyugou porphyry gold system in East Qinling, China: insights from timing and source characteristics of Late Mesozoic magmatism[J]. Journal of the Geological Society, 179(4), jgs2020-253.

    Google Scholar

    [34] Hou Zengqian, Duan Lianfeng, Lu Yongjun, et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen[J]. Economic Geology,2015,110:1541−1575. doi: 10.2113/econgeo.110.6.1541

    CrossRef Google Scholar

    [35] Kemp A I S, Hawkesworth C J, Foster G L, et al. Magmatic and Crustal Different History of Granitic Rocks from Hf-O Isotopes in Zircon[J]. Science,2007,315:980−983. doi: 10.1126/science.1136154

    CrossRef Google Scholar

    [36] Li Nuo, Chen YanJing, Santosh M, et al. Late Mesozoic granitoids in the Qinling Orogen, Central China, and tectonic significance[J]. Earth-Science Reviews,2018,182:141−173. doi: 10.1016/j.earscirev.2018.05.004

    CrossRef Google Scholar

    [37] Li Weiran. Costa Fidel A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets[J]. Geochimica et Cosmochimica Acta,2020,269:203−222. doi: 10.1016/j.gca.2019.10.035

    CrossRef Google Scholar

    [38] Li Xianhua, Tang Guoqiang, Gong Bing, et al. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin,2013,58:4647−4654. doi: 10.1007/s11434-013-5932-x

    CrossRef Google Scholar

    [39] Liu Dunyi, Wilde Simon A, Wan Yusheng, et al. Combined U-Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean-Early Neoarchean[J]. Chemical Geology,2009,261(1−2):140−154.

    Google Scholar

    [40] Qin Jiangfeng, Lai Shaocong, Li Yongfei. Multi-stage granitic magmatism during exhumation of subducted continental lithosphere: evidence from the Wulong pluton, South Qinling[J]. Gondwana Research,2013,24:1108−1126. doi: 10.1016/j.gr.2013.02.005

    CrossRef Google Scholar

    [41] Rollinson Hugh R. Using Geochemical Data: Evaluation, Presentation, and Interpretation[M]. Longman Scientific & Technical, 1993.

    Google Scholar

    [42] Tang Li, Santosh M, Dong Yunpeng, et al. Early Paleozoic tectonic evolution of the North Qinling orogenic belt: Evidence from geochemistry, phase equilibrium modeling and geochronology of metamorphosed mafic rocks from the Songshugou ophiolite[J]. Gondwana Research,2016,30:48−64. doi: 10.1016/j.gr.2014.10.006

    CrossRef Google Scholar

    [43] Tang Li, Zhao Yu, Zhang Shouting, et al. Origin and evolution of a porphyry-breccia system: Evidence from zircon U-Pb, molybdenite Re-Os geochronology, in situ sulfur isotope and trace elements of the Qiyugou deposit, China[J]. Gondwana Research,2021,89:88−104.

    Google Scholar

    [44] Tang Li, Wagner Thomas, Fusswinkel Tobias, et al. Fluid inclusion evidence for the magmatic-hydrothermal evolution of closely linked porphyry Au, porphyry Mo, and barren systems, East Qinling, China[J]. GSA Bulletin,2022,134:1529−1548. doi: 10.1130/B36170.1

    CrossRef Google Scholar

    [45] Valley John W. Oxygen Isotopes in Zircon[J]. Reviews in Mineralogy & Geochemistry,2003,53(1):343−385.

    Google Scholar

    [46] Xu Yunchou, Wang Gongwen, Gao Meng, et al. Genesis of the Shibaogou Mo-Pb-Zn deposit in the Luanchuan ore district, China: Constraints from geochronology, fluid inclusion, and H-O-S-Pb isotopes[J]. Geoscience Frontiers,2023,10:1032183. doi: 10.3389/feart.2022.1032183

    CrossRef Google Scholar

    [47] Xue Fei, Wang Gongwen, Santosh M, et al. Geochemistry and geochronology of ore-bearing and barren intrusions in the Luanchuan ore fields of East Qinling metallogenic belt, China: Diverse tectonic evolution and implications for mineral exploration[J]. Journal of Asian Earth Sciences, 2018, 157.

    Google Scholar

    [48] Zhang Yunhui, Cao Huawen, Xu Mo, et al. Petrogenesis of the late Mesozoic highly fractionated I-type granites in the Luanchuan district: implications for the tectono-magmatic evolution of eastern Qinling[J]. Geosciences Journal,2018,22(2):253−272. doi: 10.1007/s12303-017-0036-2

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(222) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint