2024 Vol. 43, No. 10
Article Contents

CHEN Xuefeng, BAI Ronglong, GUO Dongbao, LIU Guangxian. 2024. Occurrence of cadmium and ore genesis in the Bijiashan lead-zinc deposit: Evidence from LA−ICP−MS trace elements and in-situ sulfur isotope of sulfide. Geological Bulletin of China, 43(10): 1715-1733. doi: 10.12097/gbc.2023.02.041
Citation: CHEN Xuefeng, BAI Ronglong, GUO Dongbao, LIU Guangxian. 2024. Occurrence of cadmium and ore genesis in the Bijiashan lead-zinc deposit: Evidence from LA−ICP−MS trace elements and in-situ sulfur isotope of sulfide. Geological Bulletin of China, 43(10): 1715-1733. doi: 10.12097/gbc.2023.02.041

Occurrence of cadmium and ore genesis in the Bijiashan lead-zinc deposit: Evidence from LA−ICP−MS trace elements and in-situ sulfur isotope of sulfide

More Information
  • The Bijiashan deposit is the first lead−zinc deposit discovered in the Xicheng ore field in the West Qinling Orogenic Belt (WQOB), with reserves of 1.2 million tons of lead and zinc, and grades of 1.86% and 5.42%, respectively. This deposit is characterised by the presence of two distinct types of orebodies: limestone−type and phyllite−type, which are located within limestone and phyllite formations, respectively. The mineral assemblages present in both ore types include sphalerite, galena, pyrite, and chalcopyrite. Previous investigations have primarily concentrated on the geological characteristics, petrography, isotope geochemistry, and fluid inclusions associated with the deposit; however, the occurrence of cadmium (Cd) is still uncertain. In this study, laser ablation inductively coupled plasma mass spectrometry (LA−ICP−MS) was employed to analyse various sulfide minerals (sphalerite, galena, pyrite, and chalcopyrite) from both ore types. The analytical results indicate that the average Cd content in sphalerite from the limestone−type and phyllite−type ores is 2076×10−6 and 1695×10−6, respectively, exceeding the general industry standard of 1000×10−6. Conversely, the concentrations of gallium (Ga), germanium (Ge), selenium (Se), indium (In), and thallium (Tl) in galena, pyrite, and chalcopyrite from both ore types are below the mineral industry standard of 100×10−6. Based on petrographic observations and LA−ICP−MS analyses, it is proposed that there are no independent Cd minerals present in the Bijiashan lead−zinc deposit. Instead, Cd is primarily incorporated into sphalerite through the substitution mechanism of Cd2+ ↔ Zn2+, with a minor substitution pathway of Cd2+ + Fe2+ ↔ 2Zn2+. The estimated formation temperature for sphalerite in the limestone type and phyllite type ores are 198–254°C (mean of 227°C) and 203–245°C (mean of 230°C), respectively. These findings are consistent with previous studies utilising fluid inclusion thermometry, suggesting a moderate temperature for ore−forming mineralisation. In−situ sulfur isotope analysis reveals average δ34S values of 13.64‰ and 17.72‰ for the respective ore types, indicating a marine sulfate source. Drawing upon the evidence from LA−ICP−MS trace element data of sphalerite, petrography, geological characteristics of the deposit, isotope geochemistry, and metallogenic temperature, we propose that the Bijiashan lead−zinc deposit is classified as a sedimentary−exhalative (SEDEX) deposit.

  • 加载中
  • [1] Basori M B I, Gilbert S, Large R R, et al. 2018. Textures and trace element composition of pyrite from the Bukit Botol volcanic−hosted massive sulphide deposit, Peninsular Malaysia[J]. Journal of Asian Earth Sciences, 158: 173−185. doi: 10.1016/j.jseaes.2018.02.012

    CrossRef Google Scholar

    [2] Belissont R, Boiron M C, Luais B. et al. 2014. LA−ICP−MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge−rich sphalerites from the Noailhac−Saint−Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes[J]. Geochimica et Cosmochimica Acta, 126: 518−540. doi: 10.1016/j.gca.2013.10.052

    CrossRef Google Scholar

    [3] Bonnet J, Regine M R, Caumon M C, et al. 2016. Trace element distribution (Cu, Ga, Ge, Cd and Fe) in sphalerite from the Tennessee MVT deposits, USA, by combined EMPA, LA−ICP−MS, Raman spectroscopy, and crystallography[J]. Canadian Mineralogist, 54(5): 1261−1284. doi: 10.3749/canmin.1500104

    CrossRef Google Scholar

    [4] Bradley D C, Leach D L. 2003. Tectonic controls of Mississippi Valley−type lead−zinc mineralization in orogenic forelands[J]. Mineralium Deposita, 38(6): 652−667. doi: 10.1007/s00126-003-0355-2

    CrossRef Google Scholar

    [5] Chen J M. 1986. Research on basic geological characteristics and metallogenic reason of Xicheng Pb−Zn deposits[J]. Mineral Resources and Geology, (3): 10−18 (in Chinese).

    Google Scholar

    [6] Chen L, Chen K Y, Bao Z A, et al. 2017. Preparation of standards for in situ sulfur isotope measurement in sulfides using femtosecond laser ablation MC−ICP−MS[J]. Journal of Analytical Atomic Spectrometry, 32(1): 107−116. doi: 10.1039/C6JA00270F

    CrossRef Google Scholar

    [7] Cook N J, Ciobanu C L, Pring A, et al. 2009. Trace and minor elements in sphalerite: A LA−ICP−MS study[J]. Geochimica et Cosmochimica Acta, 73(16): 4761−4791. doi: 10.1016/j.gca.2009.05.045

    CrossRef Google Scholar

    [8] Cook D R, Bull S W, Large R R, et al. 2000. The importance of oxidised brines for the formation of Australian Proterozoic stratiform, sediment−hosted Pb−Zn (SEDEX) deposits[J]. Economic Geology, 95: 1−18. doi: 10.2113/gsecongeo.95.1.1

    CrossRef Google Scholar

    [9] Cugerone A, Cenki−Tok B, Chauvet A, et al. 2018. Relationships between the occurrence of accessory Ge−minerals and sphalerite in Variscan Pb−Zn deposits of the Bossost anticlinorium, French Pyrenean Axial Zone: Chemistry, microstructures and ore−deposit setting[J]. Ore Geology Reviews, 95: 1−19. doi: 10.1016/j.oregeorev.2018.02.016

    CrossRef Google Scholar

    [10] Dai W T. 1987. Geology and genesis of the Pb–Zn deposit in Bijiashan, S. Gansu[J]. Journal of Chang’an University (Earth Science edition), 9(2): 47−54 (in Chinese with English abstract).

    Google Scholar

    [11] Deng H J, Zhu D L. 2010. Metallogenic series and ore−searching prospect in the Xicheng mineralization area of Gansu Province[J]. Geology and Prospecting, 46(6): 1045−1050 (in Chinese with English abstract).

    Google Scholar

    [12] Fan Y, Zhou T F, Yuan F, et al. 2007. Mode of occurrence of thallium in the Xiangquan thallium deposit, Hexian County, Anhui[J]. Acta Petrologica Sinica, 23(10): 2530−2540 (in Chinese with English abstract).

    Google Scholar

    [13] Frenzel M, Hirsch T, Gutzmer J. 2016. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type−A meta−analysis[J]. Ore Geology Reviews, 76: 52−78. doi: 10.1016/j.oregeorev.2015.12.017

    CrossRef Google Scholar

    [14] Frenzel M, Voudouris P, Cook N J, et al. 2022. Evolution of a hydrothermal ore−forming system recorded by sulfide mineral chemistry: A case study from the Plaka Pb–Zn–Ag deposit, Lavrion, Greece[J]. Mineralium Deposita, 57(3): 417−438. doi: 10.1007/s00126-021-01067-y

    CrossRef Google Scholar

    [15] Gadd G, Matthews D L, Peter J M, et al. 2015. The world−class Howard’s Pass SEDEX Zn−Pb district, Selwyn Basin, Yukon. Part I: trace element compositions of Pyrite record input of hydrothermal, diagenetic and metamorphic fluids to mineralisation[J]. Mineral Deposita, 3: 319−342.

    Google Scholar

    [16] George L L, Cook N J, Ciobanu C L. 2016. Partitioning of trace elements in Co−crystallized sphalerite – galena – chalcopyrite hydrothermal ores[J]. Ore Geology Reviews, 77: 97−116. doi: 10.1016/j.oregeorev.2016.02.009

    CrossRef Google Scholar

    [17] Goodfellow W D. 2004. Sediment hosted lead−zinc sulphide deposits geology, genesis and exploration of SEDEX deposits, with emphasis on the Selwyn Basin, Canada[C]//Deb M, Goodfelloow W D. Sediment−hosted Lead−Zinc Deposits. Narosa Publishing house, New Delhi, 24–99.

    Google Scholar

    [18] Hao D C, Gao Z K, Han Y Q, et al. 2021. Zircon U−Pb age and its geological significance of the Anjiacha Formation in Xicheng lead−zinc ore field, western Qinling[J]. Geoscience, 35(2): 552−567 (in Chinese with English abstract).

    Google Scholar

    [19] Huo F C, Li Y J. 1995. Construction and geological evolution of west Qinling Orogenic belt[M]. Xi’an: Northwest University Press: 24–66 (in Chinese).

    Google Scholar

    [20] Jiang K, Yan Y F, Zhu C W, et al. 2014. The research on distributions of thallium and cadmium in the Jinding lead−zine deposit, Yunnan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33(5): 753–758 (in Chinese with English abstract).

    Google Scholar

    [21] Leach D L, Song Y C. 2019. Sediment−hosted zinc−lead and copper deposits in China[J]. Society of Economic Geologists, Special Publication, 22: 325–409.

    Google Scholar

    [22] Leach D L, Bradley D C, Huston D, et al. 2010. Sediment−hosted lead−zinc deposits in earth Earth history[J]. Economic Geology, 105(3): 593−625. doi: 10.2113/gsecongeo.105.3.593

    CrossRef Google Scholar

    [23] Leach D L, Bradley D, Lewchuk M T, et al. 2001. Mississippi Valley−type lead−zinc deposits through geological time: Implications from recent age−dating research[J]. Mineralium Deposita, 36(8): 711−740. doi: 10.1007/s001260100208

    CrossRef Google Scholar

    [24] Leach D L, Sangster D F, Kelley K D, et al. 2005. Sediment−hosted lead−zinc deposits: A global perspective[J]. Economic Geology, 100 Anniversary Volume: 561–607.

    Google Scholar

    [25] Leach D L, Song Y C, Hou Z Q. 2017. The world−class Jinding Zn−Pb deposit: Ore formation in an evaporite dome, Lanping Basin, Yunnan, China[J]. Mineralium Deposita, 52(3): 281−296. doi: 10.1007/s00126-016-0668-6

    CrossRef Google Scholar

    [26] Leng C B, Qi Y Q. 2017. Genesis of the Lengshuikeng Ag−Pb−Zn orefield in Jiangxi: Constraint from in−situ LA−ICP−MS analyses of minor and trace elements in sphalerite and galena[J]. Acta Geologica Sinica, 91(10): 2256−2272 (in Chinese with English abstract).

    Google Scholar

    [27] Li Y J, Wei J H. 2014. A review of trace elements enrichment in sulfides from Pb−Zn deposits and associated critical testing technology[J]. Bulletin of Geological Science and Technology, 33(1): 191 (in Chinese with English abstract).

    Google Scholar

    [28] Li Y. 1986. The study on stable isotope and fluid inclusion of lead−zinc ore deposits in Xicheng orefield[J]. Journal of Chang’an University (Earth Science edition), 8(2): 40−50 (in Chinese with English abstract).

    Google Scholar

    [29] Li Z C, Pei X Z, Li R B, et al. 2013. LA−ICP−MS zircon U−Pb dating, geochemistry of the Mishuling intrusion in western Qinling and their tectonic significance[J]. Acta Petrologica Sinica, 29(8): 2017−2029 (in Chinese with English abstract).

    Google Scholar

    [30] Li Z L, Ye L, Hu Y S, et al. 2019. The trace (dispersed) elements in pyrite from the Fule Pb−Zn deposit, Yunnan Province, China, and its genetic information: A LA−ICP MS study[J]. Acta Petrologica Sinica, 35(11): 3370−3384 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.11.07

    CrossRef Google Scholar

    [31] Lin B, Chen H S, Su W M. 1992. Geochemical characteristics of metallisation of Bijiashan lead−zinc deposit, Gansu Province[J]. Geoscience, 6(2): 150−159 (in Chinese with English abstract).

    Google Scholar

    [32] Liu G X, Yuan F, Deng Y F, et al. 2022. Critical metal enrichment in carbonate−hosted Pb−Zn systems: Insight from the chemistry of sphalerite within the Hehuashan Pb−Zn deposit, Middle−Lower Yangtze River Metallogenic Belt, East China[J]. Ore Geology Reviews, 151: 105209. doi: 10.1016/j.oregeorev.2022.105209

    CrossRef Google Scholar

    [33] Liu H L. 2015. Geological characteristics of the Bijiawan lead−zinc deposit in Cheng County, Gansu Province[J]. Gansu Science and Technology, 31(17): 31–33 (in Chinese with English abstract).

    Google Scholar

    [34] Liu H, Zhang C Q, Ji X J, et al. 2022. Differential enrichment of germanium in sphalerite from Huize lead−zinc deposit, Yunnan Province[J]. Mineral Deposits, 41(5): 1057−1072 (in Chinese with English abstract).

    Google Scholar

    [35] Liu M, Wang Z L, Xu D R, et al. 2018. Mineralogy of chlorite, pyrite and chalcopyrite in the Jingchong Co−Cu polymetallic deposit in northeastern Hunan Province, South China: Implications for ore genesis[J]. Geotectonica et Metallogenia, 42(5): 862−879 (in Chinese with English abstract).

    Google Scholar

    [36] Liu S Y, Liu Y P, Ye L, et al. 2021. LA−ICPMS trace elements of pyrite from the super−large Dulong Sn−Zn polymetallic deposit, southeastern Yunnan, China[J]. Acta Petrologica Sinica, 37(4): 1196−1212 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.04.14

    CrossRef Google Scholar

    [37] Liu T G, Zhang Q, Ye L, et al. 2004. Discovery of primary greenockite in nature, as exemplified by the Niujiaotang cadmium−zinc deposit, Guizhou[J]. Acta Mineralogica Sinica, 24(2): 191−196 (in Chinese with English abstract).

    Google Scholar

    [38] Liu W S, Zhao R Y, Zhang X, et al. 2019. The EPMA and LA− ICP− MS in−situ geochemical features of pyrrhotite and pyrite in Dabaoshan Cu−polymetallic deposit, North Guangdong Province, and their constraint on genetic mechanism[J]. Acta Geoscientica Sinica, 40(2): 291−306 (in Chinese with English abstract).

    Google Scholar

    [39] Liu Y C, Hou Z Q, Yue L L, et al. 2022. Critical metals in sediment−hosted Pb−Zn deposits in China[J]. Science Bulletin, 67(Z1): 406−424 (in Chinese with English abstract).

    Google Scholar

    [40] Lu Y W. 2009. Geological characteristics and prospecting direction of the Bijiashan lead−zinc deposit in Cheng County, Gansu, China[J]. Gansu Metallurgy, 31(1): 56−58 (in Chinese with English abstract).

    Google Scholar

    [41] Luo K, Zhou J X, Xu C, et al. 2021. The characteristics of the extraordinary germanium enrichment in the Wusihe large−scale Ge−Pb−Zn deposit, Sichuan Province, China and its geological significance[J]. Acta Petrologica Sinica, 37(9): 2761−2777 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.09.10

    CrossRef Google Scholar

    [42] Maier R C. 2011. Pyrite Trace Element Haloes to Northern Australian SEDEX Deposits[D]. Ph. D. Dissertation, University of Tasmania.

    Google Scholar

    [43] McGoldrick P, Winefield P, Bull S, et al. 2010. Sequences, syn−sedimentary structures, and subbasins: the where and when of SEDEX zinc systems in the Southern Mc Arthur Basin, Australia[J]. Soc. Econ. Geol. Inc. Spec. Publ. 15: 367–389.

    Google Scholar

    [44] Moskalyk R R. 2003. Gallium: the backbone of the electronics industry[J]. Minerals Engineering, 16: 921−929. doi: 10.1016/j.mineng.2003.08.003

    CrossRef Google Scholar

    [45] Mukherjee I, Large R. 2017. Application of pyrite trace element chemistry to exploration for SEDEX style Zn−Pb deposits: McArthur Basin, Northern Territory, Australia[J]. Ore Geology Reviews, 81: 1249−1270. doi: 10.1016/j.oregeorev.2016.08.004

    CrossRef Google Scholar

    [46] Murakami H, Ishihara S. 2013. Trace elements of Indiumindium−bearing sphalerite from tin−polymetallic deposits in Bolivia, China and Japan: A femtosecond LA−ICP−MS study[J]. Ore Geology Reviews, 53: 223−243. doi: 10.1016/j.oregeorev.2013.01.010

    CrossRef Google Scholar

    [47] Qin J F. 2010. Petrogenesis and geodynamic implications of the Late Triassic granitoids from the Qinling Orogenic Belt[J]. Ph. D. Dissertation. Northwest University (in Chinese with English abstract).

    Google Scholar

    [48] Sun S L, Wang G A, Yuan M K. 1992. Studies on lead−sulfur isotope geochemical characteristics and material source in Xicheng Pb−Zn orefield, Gansu, China[J]. Acta Geologica Gansu, 1(2): 51–65 (in Chinese with English abstract).

    Google Scholar

    [49] Taylor S R, Mc Lennan S M. 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific.

    Google Scholar

    [50] Tu G Z, Gao Z M, Hu R Z, et al. 2004. Geochemistry and metallogenic mechanism of dispersed elements[M]. Beijing: Geological Publishing House: 1–424 (in Chinese).

    Google Scholar

    [51] Wang F Y, Ge C, Ning S Y, et al. 2017. A new approach to LA−ICP−MS mapping and application in geology[J]. Acta Petrologica Sinica, 33(11): 3422−3436 (in Chinese with English abstract).

    Google Scholar

    [52] Wang H Y, Ye L, Hu YS, et al. 2021. Trace element characteristics in sphalerites from the Laochangping Pb−Zn deposit in the southeastern Chongqing[J]. Acta Mineralogica Sinica, 41(6): 623−634 (in Chinese with English abstract).

    Google Scholar

    [53] Wang J L, He B C, Li J Z, et al. 1996. Qinling−type lead−zinc deposits in China[M]. Beijing: Geological Publishing House: 1–264 (in Chinese).

    Google Scholar

    [54] Wang P. 1987. Systematic mineralogy (third volume) [M]. Beijing: Geological Publishing House: 541−542 (in Chinese).

    Google Scholar

    [55] Wang T G, Ni P, Sun W D, et al. 2010. Zircon U−Pb ages of granites at Changba and Huangzhuguan in western Qinling and implications for source nature[J]. Chinese Science Bulletin, 55(36): 3493−3505 (in Chinese). doi: 10.1360/csb2010-55-36-3493

    CrossRef Google Scholar

    [56] Wen H J, Zhou Z B, Zhu C W, et al. 2019. Critical scientific issues of super−enrichment of dispersed metals[J]. Acta Petrologica Sinica, 35(11): 3271−3291(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.11.01

    CrossRef Google Scholar

    [57] Wu T X. 1991. The geological characteristics of sulfur isotope ratios in lead and zinc ores from Bijiashan deposit, Gansu Province[J]. Northwestern Geology, 12(4): 29−36 (in Chinese with English abstract).

    Google Scholar

    [58] Wu Y, Kong Z G, Chen M H, et al. 2019. Trace elements in sphalerites from the Mississippi Valley−type lead−zinc deposits around the margins of Yangtze Block and its geological implications: A LA−ICP−MS study[J]. Acta Petrologica Sinica, 35(11): 3443−3460 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.11.12

    CrossRef Google Scholar

    [59] Xu J, Li X F. 2018. Spatial and temporal distributions, metallogenic backgrounds and processes of indium deposits[J]. Acta Petrologica Sinica, 34(12): 3611−3626 (in Chinese with English abstract).

    Google Scholar

    [60] Yang L. 2022. Occurrence and source of Cd elements in Jinding Pb−Zn deposit, Yunnan Province, China[D]. Master’s Degree Thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [61] Ye L, Liu T G. 2001. Distribution features and existing forms of cadmium in the Niujiaotang Cd−rich zinc deposit, Guizhou, China[J]. Acta Mineralogica Sinica, 21(1): 115−118 (in Chinese with English abstract).

    Google Scholar

    [62] Ye L, Cook N J, Ciobanu C L, et al. 2011. Trace and minor elements in sphalerite from base metal deposits in South China: A LA−ICP−MS study[J]. Ore Geology Reviews, 39(4): 188−217. doi: 10.1016/j.oregeorev.2011.03.001

    CrossRef Google Scholar

    [63] Ye L, Cook N J, Liu T G, et al. 2012. The Niujiaotang Cd−rich zinc deposit, Duyun, Guizhou province, southwest China: Ore genesis and mechanisms of cadmium concentration[J]. Mineralium Deposita, 47: 683−700. doi: 10.1007/s00126-011-0386-z

    CrossRef Google Scholar

    [64] Ye L, Li Z L, Hu Y S, et al. 2016. Trace elements in sulfide from the Tianbaoshan Pb−Zn deposit, Sichuan Province, China: A LA−ICP−MS study[J]. Acta Petrologica Sinica, 32(11): 3377−3393 (in Chinese with English abstract).

    Google Scholar

    [65] Yuan B, Zhang C Q, Yu H J, et al. 2018. Element enrichment characteristics: insights from element geochemistry of sphalerite in Daliangzi Pb–Zn deposit, Sichuan, Southwest China[J]. Journal of Geochemical Exploration, 186: 187−201. doi: 10.1016/j.gexplo.2017.12.014

    CrossRef Google Scholar

    [66] Yuan X, Wu Y, Duan D F, et al. 2022. Trace (Dispersed) elements in sphalerite from the giant Huoshaoyun lead−zinc deposit, Xinjiang and their geological implications[J]. Geology and Exploration, 58(3): 545−560 (in Chinese with English abstract).

    Google Scholar

    [67] Zhai Y L, Wei J H, Li Y J, et al. 2017. Present situation and research progress of the SEDEX deposit[J]. Geophysical and Geochemical Exploration, 41(3): 392−401 (in Chinese with English abstract).

    Google Scholar

    [68] Zhang G W, Zhang B R, Yuan X C, et al. 2001. Qinling Orogenic belt and continental dynamics[M]. Beijing: Science Press: 1–806 (in Chinese).

    Google Scholar

    [69] Zhang S X. 2019. Study on Prospecting model and metallogenic prediction of hidden lead−zinc deposit in Xicheng ore field[D]. Ph. D. Dissertation of China University of Geosciences (Wuhan) (in Chinese with English abstract).

    Google Scholar

    [70] Zhang T J, Zeng G L, Li Y G. 2015. Characteristics and genesis model of SEDEX lead−zinc deposit: A case study of Xicheng ore field[J]. Acta Mineralogica Sinica, 35(S1): 186−187 (in Chinese with English abstract).

    Google Scholar

    [71] Zhang Y X, Liao S L, Tao C H, et al. 2021. Ga isotopic fractionation in sulfides from the Yuhuang and Duanqiao hydrothermal fields on the Southwest Indian Ridge[J]. Geoscience Frontiers, 12(4): 126−134.

    Google Scholar

    [72] 陈建民. 1986. 西成铅锌矿床基本地质特征及成因探讨[J]. 矿产与地质, (3): 10−18.

    Google Scholar

    [73] 戴问天. 1987. 甘南毕家山铅锌矿床地质特征与成因[J]. 长安大学学报(地球科学版), 9(2): 47−54.

    Google Scholar

    [74] 邓海军, 朱多录. 2010. 甘肃西成矿集区成矿系列及找矿前景[J]. 地质与勘探, 46(6): 1045−1050.

    Google Scholar

    [75] 翟玉林, 魏俊浩, 李艳军, 等. 2017. SEDEX型矿床研究现状及进展[J]. 物探与化探, 41(3): 392−401.

    Google Scholar

    [76] 范裕, 周涛发, 袁峰, 等. 2007. 安徽和县香泉独立铊矿床铊的赋存状态研究[J]. 岩石学报, 23(10): 2530−2540. doi: 10.3969/j.issn.1000-0569.2007.10.021

    CrossRef Google Scholar

    [77] 浩德成, 丁振举, 高兆奎, 等. 2021. 西秦岭西成铅锌矿田赋矿安家岔组碎屑锆石U−Pb年龄及其地质意义[J]. 现代地质, 35(2): 552−567.

    Google Scholar

    [78] 霍福臣, 李永军. 1995. 西秦岭造山带的建造与地质演化[M]. 西安: 西北大学出版社: 24–66.

    Google Scholar

    [79] 姜凯, 燕永锋, 朱传威, 等. 2014. 云南金顶铅锌矿床中铊、镉元素分布规律研究[J]. 矿物岩石地球化学通报, 33(5): 753−758. doi: 10.3969/j.issn.1007-2802.2014.05.010

    CrossRef Google Scholar

    [80] 冷成彪, 齐有强. 2017. 闪锌矿与方铅矿的 LA−ICP−MS 微量元素地球化学对江西冷水坑银铅锌矿田的成因制约[J]. 地质学报, 91(10): 2256−2272. doi: 10.3969/j.issn.0001-5717.2017.10.008

    CrossRef Google Scholar

    [81] 李艳军, 魏俊浩. 2014. 铅锌矿床中微量元素富集及关键测试技术研究新进展[J]. 地质科技情报, 33(1): 191–198.

    Google Scholar

    [82] 李英. 1986. 西成矿田层控铅锌矿床稳定同位素和包裹体研究[J]. 长安大学学报(地球科学版), 8(2): 40−50.

    Google Scholar

    [83] 李珍立, 叶霖, 胡宇思, 等. 2019. 云南富乐铅锌矿床黄铁矿微量(稀散)元素组成及成因信息: LA−ICP−MS研究[J]. 岩石学报, 35(11): 3370−3384. doi: 10.18654/1000-0569/2019.11.07

    CrossRef Google Scholar

    [84] 李佐臣, 裴先治, 李瑞保, 等. 2013. 西秦岭糜署岭花岗岩体年代学、地球化学特征及其构造意义[J]. 岩石学报, 29(8): 2017−2029.

    Google Scholar

    [85] 林兵, 程海生, 苏文明. 1992. 甘肃毕家山铅锌矿床成矿地球化学特征[J]. 现代地质, 6(2): 150−159.

    Google Scholar

    [86] 刘红丽. 2015. 甘肃省成县毕家湾铅锌矿床地质特征[J]. 甘肃科技, 31(17): 31−33. doi: 10.3969/j.issn.1000-0952.2015.17.011

    CrossRef Google Scholar

    [87] 刘欢, 张长青, 吉晓佳, 等. 2022. 云南会泽铅锌矿床闪锌矿中稀散元素锗的差异性富集规律研究[J]. 矿床地质, 41(5): 1057−1072.

    Google Scholar

    [88] 刘萌, 王智琳, 许德如, 等. 2018. 湖南井冲钴铜多金属矿床绿泥石、黄铁矿和黄铜矿的矿物学特征及其成矿指示意义[J]. 大地构造与成矿学, 42(5): 862−879.

    Google Scholar

    [89] 刘仕玉, 刘玉平, 叶霖, 等. 2021. 滇东南都龙超大型锡锌多金属矿床黄铁矿LA−ICP−MS微量元素组成研究[J]. 岩石学报, 37(4): 1196−1212. doi: 10.18654/1000-0569/2021.04.14

    CrossRef Google Scholar

    [90] 刘铁庚, 张乾, 叶霖, 等. 2004. 贵州牛角塘镉锌矿床中发现原生硫镉矿[J]. 矿物学报, 24(2): 191−196. doi: 10.3321/j.issn:1000-4734.2004.02.017

    CrossRef Google Scholar

    [91] 刘武生, 赵如意, 张熊, 等. 2019. 粤北大宝山铜多金属矿区黄铁矿与磁黄铁矿EPMA和LA−ICP−MS原位微区组分特征及其对矿床成因机制约束[J]. 地球学报, 40(2): 291−306. doi: 10.3975/cagsb.2019.013001

    CrossRef Google Scholar

    [92] 刘英超, 侯增谦, 岳龙龙, 等. 2022. 中国沉积岩容矿铅锌矿床中的关键金属[J]. 科学通报, 67(Z1): 406−424.

    Google Scholar

    [93] 鲁燕伟. 2009. 甘肃成县毕家山铅锌矿床地质特征及找矿方向[J]. 甘肃冶金, 31(1): 56−58. doi: 10.3969/j.issn.1672-4461.2009.01.017

    CrossRef Google Scholar

    [94] 罗开, 周家喜, 徐畅, 等. 2021. 四川乌斯河大型锗铅锌矿床锗超常富集特征及其地质意义[J]. 岩石学报, 37(9): 2761−2777. doi: 10.18654/1000-0569/2021.09.10

    CrossRef Google Scholar

    [95] 秦江锋. 2010. 秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景[D]. 西北大学博士毕业论文: 20−65.

    Google Scholar

    [96] 孙省利, 王国安, 袁明坤. 1992. 西成铅锌矿田铅、硫同位素特征及成矿物质来源的研究[J]. 甘肃地质学报, 1(2): 51−65.

    Google Scholar

    [97] 涂光炽, 高振敏, 胡瑞忠, 等. 2004. 分散元素地球化学及成矿机制[M]. 北京: 地质出版社: 1−424.

    Google Scholar

    [98] 汪方跃, 葛粲, 宁思远, 等. 2017. 一个新的矿物面扫描分析方法开发和地质学应用[J]. 岩石学报, 33(11): 3422−3436.

    Google Scholar

    [99] 王皓宇, 叶霖, 胡宇思, 等. 2021. 渝东南老厂坪铅锌矿床闪锌矿微量元素组成特征[J]. 矿物学报, 41(6): 623−634.

    Google Scholar

    [100] 王集磊, 河伯墀, 李健中, 等. 1996. 中国秦岭型铅锌矿床[M]. 北京: 地质出版社: 1−264.

    Google Scholar

    [101] 王濮. 1987. 系统矿物学(下册) [M]. 北京: 地质出版社: 541–542.

    Google Scholar

    [102] 王天刚, 倪培, 孙卫东, 等. 2010. 西秦岭勉略带北部黄渚关和厂坝花岗岩锆石U−Pb年龄及源区性质[J]. 科学通报, 55(36): 3493−3505.

    Google Scholar

    [103] 温汉捷, 周正兵, 朱传威, 等. 2019. 稀散金属超常富集的主要科学问题[J]. 岩石学报, 35(11): 3271−3291. doi: 10.18654/1000-0569/2019.11.01

    CrossRef Google Scholar

    [104] 吴廷祥. 1991. 甘肃毕家山铅、锌矿硫同位素地质特征[J]. 西北地质, 12(4): 29−36.

    Google Scholar

    [105] 吴越, 孔志岗, 陈懋弘, 等. 2019. 扬子板块周缘MVT型铅锌矿床闪锌矿微量元素组成特征与指示意义: LA−ICP−MS研究[J]. 岩石学报, 35(11): 3443−3460. doi: 10.18654/1000-0569/2019.11.12

    CrossRef Google Scholar

    [106] 徐净, 李晓峰. 2018. 铟矿床时空分布、成矿背景及其成矿过程[J]. 岩石学报, 34(12): 3611−3626.

    Google Scholar

    [107] 杨黎. 2022. 云南金顶铅锌矿床Cd元素赋存形式与来源[D]. 中国地质大学(北京)硕士学位论文: 1−79.

    Google Scholar

    [108] 叶霖, 刘铁庚. 2001. 贵州都匀牛角塘富镉锌矿床中镉的分布及赋存状态探讨[J]. 矿物学报, 21(1): 115−118. doi: 10.3321/j.issn:1000-4734.2001.01.019

    CrossRef Google Scholar

    [109] 叶霖, 李珍立, 胡宇思, 等. 2016. 四川天宝山铅锌矿床硫化物微量元素组成: LA−ICP−MS研究[J]. 岩石学报, 32(11): 3377−3393.

    Google Scholar

    [110] 袁鑫, 吴越, 段登飞, 等. 2022. 新疆火烧云超大型铅锌矿床闪锌矿微量(稀散)元素组成特征与指示意义[J]. 地质与勘探, 58(3): 545−560.

    Google Scholar

    [111] 张国伟, 张本仁, 袁学诚, 等. 2001. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社: 1–806.

    Google Scholar

    [112] 张世新. 2019. 西成矿田隐伏铅锌矿床找矿模型及成矿预测研究[D]. 中国地质大学(武汉)博士学位论文: 1−203.

    Google Scholar

    [113] 张腾蛟, 曾广亮, 李佑国. 2015. SEDEX铅锌矿床特征和成因模式—以中国西成矿田为例[J]. 矿物学报, 35(S1): 186−187.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(4)

Article Metrics

Article views(784) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint