Citation: | ZHANG Qilian, HUANG Guangqiong, WEI Fang, HUANG Wenfang, DENG Jun, LI Huosong, WEI Liangxi, MENG Jiafeng, QIN Liangchao, YANG Hai, HUANG Baoning, WU Hanzhi, XIN Xiaowei, MA Jiangao, LI Jialong, WU Xiangyu. 2024. Characteristics and evolution of sedimentary facies of bauxite-bearing rocks series of Permian bauxite deposits in western Guangxi. Geological Bulletin of China, 43(10): 1734-1755. doi: 10.12097/gbc.2023.03.001 |
The study on sedimentary facies of Permian bauxite−bearing rock series in western Guangxi has been rare so that a sediment sequence has not been set up yet. Based on line survey and section study, adding microscopic observation and elemental analysis of rocks and ores, this paper has determined four sedimentary facies and eight subfacies of ore−bearing rock series, the four faces are swamp carbonaceous mud facies on the top, the coastal plain mudstone facies in the upper, the peneplain bauxite facies in the middle and the lakeshore−lake ferric−aluminous rocks facies in the lower, and the peneplain bauxite facies can be divided into subfacies such as valley bauxite laminated mudstone, gentle−slope residual bauxite, valley sedimentary bauxite and slope bauxite subfacies, and the lakeshore−lake ferric−aluminous rocks can be divided into the aluminous mudstone−ferro mudstone−ferroaluminite of the shore−shallow lake and the paleosoil of lakeshore plain. The continental volcanic ash remains in all facies. In bauxite−bearing rock series, the composition variations (ICV) of mudstone fluctuates around 1, indicating the existence of recycling sediments, and chemical index alteration (CIA) of mudstone is greater than 97, indicating a high degree of weathering. The contents of sulfurophilic elements (Cu, Zn, Co, Ni) and ferriophilic elements (V) are generally higher in the lower ferric−aluminous rocks than ones in the bauxite and mudstone, while oxygenophilic elements (Th, U, Nb, Ta, Sn, W) are on the contrary. The values of REE in bauxite phases are the highest, and the δCe and LREE/HREE of bauxite and mudstone are significantly higher than those of ferro−aluminous rocks. The Fe2O3−Al2O3−SiO2 projection shows that monsoon climate persist all the time when the ore−bearing rock series developed, and the special element values of the mudstones in bauxite facies are the extreme ones in all mudstones that mean a period of extreme laterization produced by peneplain, and the gravel and element geochemistry show that the ore−bearing rock series are of inheritance. Corresponding to the four facies the sequence of sedimentary facies can be derived into three stages: the early laterite aggregation, then the peneplain−forming (bauxite mineralization) and the last plain−forming; and volcanic ash kept settling during the development of ore−bearing rock series. The bauxite is a product of secondary weathering crust.
[1] | Aleva G J J. 1994. Laterites: Concepts, geology, morphology and chemistry[R]. International Soil Reference and Information Centre (ISRIC), Wageningen , Netherlands. |
[2] | Alireza P, Grang M Y, Robert H. R. 2000. Bahavior of major and trace elements (including REE) during Paleoproterzoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada[J]. Geochimica et Cosmochimica Acta, 64(23): 2199−2220. |
[3] | Bárdossy G. 1990. Karst bauxites: Bauxite deposits on carbonate rocks [M]. Beijing: Metallurgical Industry Press: 211−235. |
[4] | Bárdossy G, Alleva J J. 1994. Lateritic bauxites [M]. Shengyang: Liaoning Science and Technology Press: 145−148. |
[5] | Boynton W V. 1984. Geochemistry of the rare earth elements: Meteorite studies. Henderson P. Rear earth Element Chemistry[M]. Amsterdam: Elsevier: 141−150. |
[6] | Cheng S B, Liu A S, Cui S, et al. 2020. Mineralization process of Permian karst bauxite in Western Guangxi[J]. Earth Science, 1-19[2021-01-08]. http://kns.cnki.net/kcms/detail/42.1874.P.20201105.1118.002.html (in Chinese with English abstract). |
[7] | Cheng S Y, Zhou F. 1997. Research on development and utilization of low−grade gibbsite of rich−iron in Guangxi[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 16(Supp): 26−27 (in Chinese). |
[8] | Cheng Y, Yin F G, Li J M, et al. 2012. Sedimentary characteristics of the Nanchuan bauxite deposit, Chongqing[J]. Sedimentary Geology and Tethyan Geology, 32(1): 106−112 (in Chinese with English abstract). |
[9] | Cullers R L, Podkovyrov V N. 2002. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia[J]. Precambrian Research, 117(3−4): 157−183. doi: 10.1016/S0301-9268(02)00079-7 |
[10] | Dai T G, Long Y Z, Zhang Q Z, et al. 2003. REE geochemistry of some bauxite deposits in the western Guangxi district[J]. Geology and Exploration, 39(4): 1−5 (in Chinese with English abstract). |
[11] | Dai T G, Long Y Z, Zhang Q Z, et al. 2007. Geologic and geochemical characteristics and metallogenic mechanism of aluminium multi−metal bauxite deposits in the Western Guangxi[J]. Journal of Earth Sciences and Environment, 4(29): 345−350 (in Chinese with English abstract). |
[12] | Dai J, Wang Y D, Zhou N, et al. 2021. Geochemical characteristics and paleoenvironmental significance of mudstones from the Lower Jurassic Xiangxi Formation in the Zigui Basin, western Hubei Province, China[J]. Journal of Stratigraphy, 45(1): 58−68 (in Chinese with English abstract). |
[13] | Deng J, Wang Q F, Yang S J, et al. 2010. Geonetic relationship between the Emeishan plume and the bauxite deposits in Western Guangxi, China: Constraints from U−Pb and Lu−Hf isotopes of the detrital zircons in bauxite ores[J]. Journal of Asian Earth Science, 37(5/6): 412−424. doi: 10.1016/j.jseaes.2009.10.005 |
[14] | Du Y S, Huang H, Yang J H, et al. 2013. The basin translation from Late Paleozoic to Triassic of the Youjiang basin and its tectonic signification[J]. Geological Review, 59(1): 1−11 (in Chinese with English abstract). |
[15] | Du Y S, Yu W C, Zhang Y G. 2020. Ore sedimentology: A developing interdisciplinary research direction of sedimentology[J]. Journal of Palaeogeography, 22(4): 601−619 (in Chinese with English abstract). |
[16] | Fedo C M, Nesbitt H W, Young G M. 1995. Unraveling the effects of potassium metasomatism in in sedimentary rocks and paleosoils, with implications for paleoweathering conditions and provenance[J]. Geology, 23(10): 921−924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2 |
[17] | Feng Z. Z. 2020. A review on the definitions of terms of sedimentary facies[J]. Journal of Palaeogeography, 22(2): 207−220 (in Chinese with English abstract). |
[18] | Gao C L, Wang J, Jin J, et al. 2020. Research progress on sedimentary mechanism of alluvial fan and discussion on the genetic classification scheme[J]. Geological Review, 66(6): 1650−1674(in Chinese with English abstract). |
[19] | Gong Y X, Sun C L. 1996. A discovery of molasse facies deposits of the Caledonides in southweastern Jiangxi[J]. Regional Geology of China, 2: 108−113 (in Chinese with English abstract). |
[20] | Ding H F, Ma D S, Yiao C Y. 2014. Geochemistry study on Neoproterozoic glaciogenic sediments in Aksu area, Xinjiang[J]. Geochimica, 43(3): 224−237 (in Chinese with English abstract). |
[21] | Han C L, Wang Q B, Guo Y, et al. 2010. A study on the genetic features of a paleosol sequence at Fenghuang Mountain in Chaoyang, Liaoning Province[J]. Chinese Journal of Soil Science, 41(6): 1282−1287 (in Chinese with English abstract). |
[22] | Hou F H, Huang J X. 1984. Research into the Permian and Triassic volcaniclastic turbidite of Nanpan river seg—A unique turbidite mode without submarine fan[J]. Acta Sedimentologica Sinica, 2(4): 19−34 (in Chinese with English abstract). |
[23] | Hou Z J, Chen H D, Tian J C, et al. 2001. Study on sequence stratigraphy of continental deposits in Ordos basin during later Plaleozoic era[J]. J Mineral Petrol, 21(3): 114−123 (in Chinese with English abstract). |
[24] | Hou Y L, He B, Zhong Y T. 2014. New perspective on provenance of the Permian karstic bauxite in the Western Guangxi: geochemical evidence of clastic rocks of the Heshan Formation[J]. Geotectonica et Metallogenia, 38(1): 181−196 (in Chinese with English abstract). |
[25] | Jiao Y W, Wang X L, Cui Y L, et al. 2013. Features of lithofacies palaeogeography and mineralization in upper Permian Wuchiapingian in Wenshan county, Yunnan Province, China[J]. Acta Mieralogica Sinica. 33(4): 629−636 (in Chinese with English abstract). |
[26] | Kuang G D, Wu H R. 2002. Late Paleozoic strata of deep−water facies in Western Guangxi[J], Chinese Journal of Geology, 37(2): 152−164 (in Chinese with English abstract). |
[27] | Li G P, Zhang Y L. 2013. Study on the basic geological characteristics of the ore−hosted strata of Henan bauxite deposit[J]. Mimeral Exploration, 4(5): 485−495 (in Chinese with English abstract). |
[28] | Li J L, Dai T G, Yang L, et al. 2015. Mineraloical characteristics of kastic bauxite in Fusui, Guangxi Province and Its Origin Significance[J]. J. Mineral. Petrol., 2015, 35(3): 101−109 (in Chinese with English abstract). |
[29] | Li P T, Zhang Q Z. 2008. Research on geochemistry of REE in the Sanhe bauxite deposit in Jingxi County, Guangxi[J]. Mineral Resources and Geology, 22(6): 536−540 (in Chinese with English abstract). |
[30] | Liang H, Wen S N, Yao S Q, et al. 2022. Provenance characteristics and geological significance of Li−rich claystone in Upper Permian Heshan Formation, western Guangxi[J]. Journal of Guilin University of Technology, https://kns.cnki.net/kcms/detail/45.1375.N.20220228.1613.002.html (in Chinese with English abstract). |
[31] | Liao S F, Liang T R, Zhang Y H. 1989. Disscussion on the problems of bauxite deposits and their lateritic residuum as mechanism for the minerogenete of bauxite in China[J]. Acta Sedimentologica Sinica, 7(1): 1−10 (in Chinese with English abstract). |
[32] | Lin Y, Lu Y, Shang K J. 2014. REE geochemical characteristics and material source of the Nianyin bauxite deposit in Jinxi county, Gaungxi Province[J]. Geology and Exploration, 50(1): 58−66 (in Chinese with English abstract). |
[33] | Liu C S, Jin Z G, Yu W. 2014. Sedimetary facies analysis of bauxite in northern Guizhou[J]. J. Mineral. Petrol., 34(3): 81−88 (in Chinese with English abstract). |
[34] | Liu P, Liao Y C. 2014. Regional metallogenic model and prospecting criteria of sedimentary bauxite deposits in Central Guizhou−Southern Chongqing region[J]. Geology in China, 41(6): 2063−2082 (in Chinese with English abstract). |
[35] | Liu P, Han Z H, Nie K. 2022. Characteristics of ore− bearing rock series, control conditions and generative development model of karst bauxite deposit in central Guizhou−southern Chongqing[J]. Geological Review, 68(4): 2022072004 (in Chinese with English abstract). |
[36] | Liu Y J, Cao L M, Li Z L, et al. 1984. Elemental Geochemistry[M]. Beijing: Science Press (in Chinese). |
[37] | Liu X F, Wang Q F, Deng J, et al. 2010. Mineralogical and geochemical investigations of the Dajia Salento−type bauxite deposits, western Guangxi, China[J]. Journal of Geochemical Exploration, 105: 137−152. doi: 10.1016/j.gexplo.2010.04.012 |
[38] | Liu X F, Wang Q F, Zhang Q Z, et al. 2016. Genesis of REE minerals in the karstic bauxite in western Guangxi, China, and its constrains on the deposit formation conditions[J]. Ore Geology Review, 75: 100−115. doi: 10.1016/j.oregeorev.2015.12.015 |
[39] | Liu X F, Wang Q F, Zhang Q Z, et al. 2017. Genesis of the Permian karstic Pingguo bauxite deposit, western Guangxi, China[J]. Miner Deposita, 52(7): 1031−1048. doi: 10.1007/s00126-017-0723-y |
[40] | Lu A H, Li Y, Ding H R, et al. 2020. Natural mineral photoelectric effect: Non−classical mineral photosynthesis[J]. Earth Science Frontiers, 27(5): 179−194 (in Chinese with English abstract). |
[41] | Lü H B, Zhang Y X, Xia B D, et al. 2003. Syn−sedimentary compression structures in the Middle Triassic flysch of the Nanpanjiang Basin, SW China[J]. Geological Review, 49(5): 449−456 (in Chinese with English abstract). |
[42] | Lu L Y, Chen R, Yu N, et al. 2021. Constrains of the early Carboniferous Datangian lithofacies paleogeography on the bauxite mineralization in the Kaiyang area, central Guizhou, China[J]. Acta Mineralogica Sinica, 41(4/5): 509−519 (in Chinese with English abstract). |
[43] | Mao Z F, Zhou H R, Wang X L, et al. 2013. Characteristics of lithofacies paleogeography of Qiubei area, Southeast of Yunnan Provence during early Wujiaping period[J]. Acta Mieralogica Sinica, 33(4): 599−605 (in Chinese with English abstract). |
[44] | Mclennan S M, Hemming S, Mcdanies D K. 1993. Geochemical approaches to sedimentation, provenance, and tectonics [J]. Geological Society of America, Special Papers: 21−40. |
[45] | Peng Y, Hu G A, Lu G, et al. 2004. Progress in studying on limestone dikes in late Paleozoic strata in Northwestern Guangxi[J]. Geological Review, 50(6): 613−620 (in Chinese with English abstract). |
[46] | Peng Y, Lu G, Hu G A, et al. 2009. Genesis of the Permian limestone Neptunian dykes and limestone breccia talus in the Xiajia, Lingyun county, Guangxi, and its geological significance[J]. Geological Review, 55(1): 731−737(in Chinese with English abstract). |
[47] | Peng Y, Lu G. 2015. New approach on Devonian−Carboniferous carbonate Neptunian dikes and earthquake events in Leye, Guangxi[J]. Geological Review, 61(3): 281−287(in Chinese with English abstract). |
[48] | Qi L, Yu W C, Du Y S, 2015. Paleoclinate evolution of the Cryogenian Tiesi’ao Formation−Datangpo Formation in eastern Guizhou Province: Evidence from the chemical index of alteration[J]. Geological Science and Technology Information, 34(6): 47−57 (in Chinese with English abstract). |
[49] | Qiao X F, Peng Y, Gao L Z. 2002. Interpretation of the seismic origin of Permian limestione dikes in northwestern Guangxi[J]. Geological Bulletin of China, 21(2): 102−104(in Chinese with English abstract). |
[50] | Shao L Y, Lu J, Tim J. 2006. Mineralogy and geochemistry ofthe carbonate coal measures of the Late Permian in central Guangxi[J]. Journal of China Coal Society, (6): 770−775 (in Chinese with English abstract). |
[51] | Sun S S, McDonough W F. 1989. Chemical and isotopic systematics basalts: Implications for mantle composition and processes [J]. Geological Society, London, Special Publications, 42(1): 313−345. |
[52] | Tang H D, Ma Y J, Hu J Y, et al. 2020. Metallogenic regularities and ore controlling factors of Wumengou bauxite in Shanzhou district, Henan Province[J]. Northwestern Geology, 53(3): 233−242(in Chinese with English abstract). |
[53] | Wang L, Long Y Z, Peng S L. 2004. Geologic and geochemical study on material derivation of bauxite deposits in Western, Guangxi[J]. Journal of Guilin institute of Technology, 24(1): 1−6 (in Chinese with English abstract). |
[54] | Wang L K, Wen L, Li Z W, et al. 2024. Stratigraphic sequence and tectonic−sedimentary evolution of Sinian−Cambrian boundary in Yangmu−Yandong area, Guangyuan, Sichuan Province[J]. Geological Bulletin of China, 43(5): 812−826 (in Chinese with English abstract). |
[55] | Wang Y C, Li Z K, Zhai Z F, et al. 2011. Formation bauxite mineralization condition and rule in Shanxi Province[J]. Northwestern Geology, 44(4): 82−88 (in Chinese with English abstract). |
[56] | Weng S F, Lei Z Y, Chen Q, et al. 2013. A correlation of sedimentary facies and bauxite ore grade of the Wuchuan−Zheng’an−Daozhen bauxitic belt, northern Guizhou province[J]. Geological Science and Technology Information, 32(1): 19−22 (in Chinese with English abstract). |
[57] | Xiao W J, Song D F, Zhang J E, et al. 2022. Anatomy of the structure and evolution of subduction zone and research prospects[J]. Earth Sceince, 47(9): 3074−3106 (in Chinese with English abstract). |
[58] | Xu B, Zeng W Q, Diao H, et al. 2020. Trace rare earth elements in the Pinghu Formation of Xihu sag and its implications for paleo−production environment[J]. Marine Geology & Quaternary Geology, 41(3): 72−84(in Chinese with English abstract). |
[59] | Xu J Q, Chen Y B, Pang B C, et al. 2021. Tectonic evolution from Permian to Cretaceous in western Guangxi and its relation with sedimentary bauxite[J]. Geological Jourmal of China Universities, 27(4): 422−431(in Chinese with English abstract). |
[60] | Xu X T, Shao L Y. 2018. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance[J]. Journal of Palaeogeography, 20(3): 516−522(in Chinese with English abstract). |
[61] | Yang H Y, Chen S Y, Hao X L, et al. 2010. Sedimentary characteristics and evolutionary stages of Late Paleozoic Longlin isolated platform in Nangpanjiang depression[J]. Geology in China. 37(6): 1638−1646(in Chinese with English abstract). |
[62] | Yang T N, Xue C D, Xin D, et al. 2019. Paleotethyan tectonic evolution of the Sanjiang orogenic belt, SW China: Temporal and spatial distribution pattern of arc−like igneous rocks[J]. Acta Petrologica Sinica, 35(5): 1324−1340(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.05.02 |
[63] | Yao S Q, Pang C J, Wen S N, et al. 2020. Li−rich claystone in the upper Permian Heshan formation in western Guangxi and its prospecting significance[J/OL]. Geotectonica et Metallogenia. doi:10.16539/j.ddgzyckx.2020.04.019(in Chinese with English abstract). |
[64] | Yu W C, Du Y S, Gu S Z, et al. 2013. Multiperiod Leaching process of early Permian bauxite in Wuchuan−Zhengan−Daozhen area, Northern Guizhou Province and its significance of ore−control[J]. Geological Science and Technology Information, 32(1): 27−32(in Chinese with English abstract). |
[65] | Yu W C, Zhang Q L, Du Y S, et al. 2014. Leaching−metallogenic process of Quaternary Salento−type bauxite in Fusui area, Guangxi[J]. Geotectonica et Metallogenia, 38(3): 621−632(in Chinese with English abstract). |
[66] | Yu W C, Algeo Thomas J, Du Y S, et al. 2016. Mixed volcanogenic−lithogenic sources for Permian bauxite deposits in southwestern Youjiang basin, South China, and their metallogenic significance[J]. Sedimentary Geology, 341: 276−288. doi: 10.1016/j.sedgeo.2016.04.016 |
[67] | Zhang Q L, Liang Y P, Yu W C, et al. 2016. Sedimentary environment of allites in the Permian Heshan Formation in Western Guangxi[J]. Journal of Palaeogeophy. 18(4): 595−604(in Chinese with English abstract). |
[68] | Zhang Q L, Zhao X J, Li Y K, et al. 2020. Geochemical characteristics and sediment model of Permian bauxite deposit in western Guangxi[J]. Geological Review, 66(4): 1043−1059(in Chinese with English abstract). |
[69] | Zhang Q L, Chen Y B, Liu X J, et al. 2022. Characteristics and geological significance of volcanic ash in bauxite in western Guangxi[J]. Geological Review, 68(2): 531−550(in Chinese with English abstract). |
[70] | Zhang R R, Jiang D H, Shi D D, et al. 2020. Isothermal adsorption of cadmium and lead by brown calcareous soil colloids in a karst area[J]. Journal of Agro−Environment Science, 39(3): 554−562(in Chinese with English abstract). |
[71] | Zhang T B, Wang J J, Han B, et al. 2023 Geogical characteristics of tuffs and its constraints on the tectonic regimes transformation in the southerm Ordos basin[J]. Geological Bulletin of China, 42(7): 1082−1097(in Chinese with English abstract). |
[72] | Zhao H N, Xing L C, He H T, et al. 2022. The mode of occurrence of niobium in bauxite of the upper Permian Heshan Formation in the Pingguo area, Guangxi autonomous Region, China[J]. Acta Mimeralogica Sinica, 42(04): 453−460(in Chinese with English abstract). |
[73] | Zhen B Q, Chai D H, 1986. A preliminary study on the sedimentary environment and the rule of minerogenetic enrichment of the Benxi age bauxites in Shanxi and western Henan[J]. Acta Sedimentologica Sinica, 4(3): 115−126 (in Chinese with English abstract). |
[74] | Zheng M, Liang Z W, Feng Z W, et al. 2023. Lithofacies Paleogeography of the Cambrian in the Central Ordos Basin[J]. Northwestern Geoloy, 56(6): 352−368 (in Chinese with English abstract). |
[75] | 巴多西 G, 阿列瓦 G J J. 1994. 红土型铝土矿[M], 沈阳: 辽宁科学技术出版社: 145−145. |
[76] | 巴多西 G. 1990. 岩溶型铝土矿[M], 北京: 冶金工业出版社: 211−235. |
[77] | 程顺波, 刘阿睢, 崔森, 等. 2021. 桂西二叠纪喀斯特型铝土矿地质成矿过程[J]. 地球科学, 46(8): 2697−2710. |
[78] | 陈世益, 周芳. 1997. 广西高铁低品位三水铝土矿的开发利用研究[J]. 矿物岩石地球化学通报, 16(增刊): 26−27. |
[79] | 陈阳, 尹福光, 李军敏, 等. 2012. 南川铝土矿沉积相特征[J]. 沉积与特提斯地质, 32(1): 107−112. doi: 10.3969/j.issn.1009-3850.2012.01.017 |
[80] | 戴塔根, 龙永珍, 张起钻, 等. 2003. 桂西某些铝土矿床稀土元素地球化学研究[J]. 地质与勘探, 39(4): 1−5. doi: 10.3969/j.issn.0495-5331.2003.04.001 |
[81] | 戴塔根, 龙永珍, 张起钻, 等. 2007. 桂西铝多金属矿床地质地球化学特征与成矿机理[J]. 地球科学与环境学报, 110(4): 345−350. doi: 10.3969/j.issn.1672-6561.2007.04.002 |
[82] | 代军, 王永栋, 周宁, 等. 2021. 鄂西秭归盆地下侏罗统香溪组泥岩地球化学特征及其古环境意义[J]. 地层学杂志, 45(1): 58−68. |
[83] | 丁海峰, 马东升, 姚春彦, 等. 2014. 新疆阿克苏地区新元古代冰成沉积地球化学研究[J]. 地球化学, 43(3): 224−237. |
[84] | 杜远生, 黄虎, 杨江海, 等. 2013. 晚古生代—中三叠世右江盆地的格局和转换[J]. 地质论评, 59(1): 1−11. doi: 10.3969/j.issn.0371-5736.2013.01.001 |
[85] | 杜远生, 余文超, 张亚冠. 2020. 矿产沉积学: 一个新的交叉学科方向[J]. 古地理学报, 22(4): 601−619. doi: 10.7605/gdlxb.2020.04.041 |
[86] | 冯增昭. 2020. 沉积相的一些术语定义的评论[J]. 古地理学报, 22(2): 207−220. doi: 10.7605/gdlxb.2020.12.217 |
[87] | 高崇龙, 王剑, 靳军, 等. 2020. 沉积扇沉积机制研究进展及其成因分类方案探讨[J]. 地质论评, 66(6): 1650−1674. |
[88] | 龚由勋, 孙存礼. 1996. 赣西南加里东造山带磨拉石相沉积的发现[J]. 中国区域地质, 2: 108−113. |
[89] | 韩春兰, 王秋兵, 郭月, 等. 2010. 辽宁朝阳凤凰山剖面古土壤序列土壤发育特征研究[J]. 土壤通报, 41(6): 1282−1287. |
[90] | 侯方浩, 黄继祥. 1984. 南盘江断陷区二、三叠系的火山碎屑浊积岩—一种独特的无海底扇浊流沉积模式[J]. 沉积学报, 2(4): 19−34. |
[91] | 侯中建, 陈洪德, 田景春, 等. 2001. 鄂尔多斯地区晚古生代陆相沉积层序地层学研究[J]. 矿物岩石, 21(3): 114−123. doi: 10.3969/j.issn.1001-6872.2001.03.018 |
[92] | 侯莹玲, 何斌, 钟玉婷. 2014. 桂西二叠系喀斯特型铝土矿成矿物质来源的新认识: 来自合山组碎屑岩地球化学证据[J]. 大地构造与成矿学, 38(1): 181−196. |
[93] | 焦扬, 王训练, 崔银亮, 等. 2013. 云南文山地区晚二叠世吴家坪阶岩相古地理特征及成矿作用[J]. 矿物学报, 33(4): 629−636. |
[94] | 邝国敦, 吴浩若. 2002. 桂西晚古生代深水相地层[J]. 地质科学, 37(2): 152−164. doi: 10.3321/j.issn:0563-5020.2002.02.003 |
[95] | 李国平, 张瑜麟. 2013. 河南铝土矿含矿岩系基本地质特征研究[J]. 矿产勘查, 4(5): 485−495. doi: 10.3969/j.issn.1674-7801.2013.05.003 |
[96] | 李洁兰, 戴塔根, 杨柳, 等. 2015. 广西扶绥地区喀斯特型铝土矿矿物学特征及其成因意义[J]. 矿物岩石, 35(3): 101−109. |
[97] | 李普涛, 张起钻. 2008. 广西靖西县三合铝土矿稀土元素地球化学研究[J]. 矿产与地质, 22(6): 536−540. doi: 10.3969/j.issn.1001-5663.2008.06.013 |
[98] | 梁航, 温淑女, 姚双秋, 等. 2022. 桂西上二叠统合山组锂超常富集粘土岩的物源特征与地质意义[J]. 桂林理工大学学报. https://kns.cnki.net/kcms/detail/45.1375.N.20220228.1613.002.html. |
[99] | 廖士范, 梁同荣, 张月恒. 1989. 论我国铝土矿床类型及其红土化风化壳形成机制问题[J]. 沉积学报, 7(1): 1−10. |
[100] | 林宇, 吕勇, 山克强. 2014. 桂西念寅铝土矿稀土元素地球化学特征及物质来源分析[J]. 地质与勘探, 50(1): 58−66. |
[101] | 刘辰生, 金中国, 于汪. 2014. 黔北地区铝土矿床沉积相研究[J]. 矿物岩石, 34(3): 81−88. |
[102] | 刘平, 廖有常. 2014. 黔中—渝南沉积铝土矿区域成矿模式及找矿模型[J]. 中国地质, 41(6): 2063−2082. doi: 10.3969/j.issn.1000-3657.2014.06.020 |
[103] | 刘平, 韩忠华, 聂坤. 2024. 黔中—渝南岩溶型铝土矿含矿岩系特征、控制条件及生成发展模式[J]. 地质论评, 70(3): 2024030023. |
[104] | 刘英俊, 曹励明, 李兆麟, 等. 1984. 元素地球化学[M]. 北京: 科学出版社. |
[105] | 鲁安怀, 李艳, 丁竑瑞, 等. 2020. 天然矿物光电效应: 矿物非经典光合作用[J]. 地学前缘, 27(5): 179−194. |
[106] | 吕洪波, 章雨旭, 夏邦栋, 等. 2003. 南盘江盆地中三叠统复理石中的同沉积挤压构造——一类新的沉积构造的归类、命名和构造意义探讨[J]. 地质论评, 49(5): 449−456. doi: 10.3321/j.issn:0371-5736.2003.05.001 |
[107] | 吕留彦, 陈仁, 于宁, 等. 2021. 黔中开阳地区早石炭世大塘期岩相古地理对铝土矿成矿的制约[J]. 矿物学报, 41(4/5): 509−519. |
[108] | 毛志芳, 周洪瑞, 王训练, 等. 2013. 滇东南丘北地区二叠世吴家坪早期岩相古地理特征[J]. 矿物学报, 33(4): 599−605. |
[109] | 彭阳, 胡贵昂, 陆刚, 等. 2004. 桂西北晚古生代地层中的沉积灰岩墙研究进展[J]. 地质论评, 50(6): 613−620. |
[110] | 彭阳, 陆刚, 胡贵昂, 等. 2009. 广西凌云下甲二叠纪沉积灰岩墙和角砾灰岩体的成因及地质意义[J]. 地质论评, 55(1): 731−737. doi: 10.3321/j.issn:0371-5736.2009.01.005 |
[111] | 彭阳, 陆刚. 2015. 广西乐业泥盆系——石炭系沉积碳酸盐岩脉及地震事件沉积的新发现[J]. 地质论评, 61(3): 281−287. |
[112] | 齐靓, 余文超, 杜远生, 等. 2015. 黔东南华纪铁丝坳期—大塘坡期古气候的演变: 来自CIA的证据[J]. 地质科技情报, 34(6): 47−57. |
[113] | 乔秀夫, 彭阳, 高林志. 2002. 桂西北二叠纪灰岩墙(脉)的地震成因解释[J]. 地质通报, 21(2): 102−104. |
[114] | 邵龙义, 鲁静, Tim Jones. 2006. 桂中晚二叠世碳酸盐岩型煤系高有机硫煤的矿物学和地球化学研究[J]. 煤炭学报, (6): 770−775. doi: 10.3321/j.issn:0253-9993.2006.06.016 |
[115] | 唐华东, 马玉见, 胡举勇, 等. 2020. 河南省陕州区五门沟铝土矿成矿规律及控矿因素分析[J]. 西北地质, 53(3): 233−242. |
[116] | Trong Ngnguyen huu. 2020. 越南昆嵩地块早古生代花岗质岩浆作用及其地质意义[D]. 中国地质大学(武汉)博士学位论文: 15−19. |
[117] | 王力, 龙永珍, 彭省临. 2004. 桂西铝土矿成矿物质来源的地质地球化学分析[J]. 桂林工学院学报, 24(1): 1−6. |
[118] | 王林康, 文龙, 李智武, 等, 2024. 四川广元羊木—岩洞地区震旦纪—寒武纪界线地层序列及构造−沉积演化[J]. 地质通报, 43(5): 812−826. |
[119] | 王银川, 李昭坤, 翟自峰, 等. 2011. 山西本溪组铝土矿成矿条件及成矿规律探讨[J]. 西北地质, 44(4): 82−88. doi: 10.3969/j.issn.1009-6248.2011.04.011 |
[120] | 翁申富, 雷志远, 陈强, 等. 2013. 黔北务正道地区铝土矿沉积相与矿石品质的关系[J]. 地质科技情报, 32(1): 19−22. |
[121] | 肖文交, 宋东方, 张继恩, 等. 2022. 俯冲带结构演变解剖与研究进展[J]. 地球科学, 47(9): 3074−3106. |
[122] | 徐博, 曾文倩, 刁慧, 等. 2020. 东海盆地西湖凹陷平湖组微量稀土元素对古生产环境的指示意义[J]. 海洋地质与第四纪地质, 41(3): 72−84. |
[123] | 徐小涛, 邵龙义. 2018. 利用泥质岩化学蚀变指数分析物源区风化程度的限制因素[J]. 古地理学报, 20(3): 516−522. |
[124] | 许箭琪, 陈有斌, 庞保成, 等, 2021. 桂西地区二叠纪至白垩纪构造演化对沉积型铝土矿成矿的制约[J]. 高校地质学报, 27(4): 422−431. |
[125] | 杨怀宇, 陈世悦, 郝晓良, 等, 2010. 南盘江坳陷古生代隆林孤立台地沉积特征与演化阶段[J]. 中国地质, 37(6): 1638−1646. |
[126] | 杨天南, 薛传东, 信迪, 等. 2019. 西南三江造山带古特提斯弧岩浆岩的时空分布及构造演化新模型[J]. 岩石学报, 35(5): 1324−1340. doi: 10.18654/1000-0569/2019.05.02 |
[127] | 姚双秋, 庞崇进, 温淑女, 等. 2021. 桂西上二叠统合山组富锂粘土岩的发现及意义[J]. 大地构造与成矿学,45(5): 951−962. |
[128] | 余文超, 杜远生, 顾松竹, 等. 2013. 黔北务正道地区早二叠世铝土矿多期淋滤作用及其控矿意义[J]. 地质科技情报, 32(1): 27−32. |
[129] | 余文超, 张启连, 杜远生, 等. 2014. 广西扶绥第四系萨伦托型铝土矿淋滤成矿过程[J]. 大地构造与成矿学, 38(3): 621−632. |
[130] | 张启连, 梁裕平, 余文超, 等. 2016. 桂西地区二叠系合山组铝土岩的沉积环境[J]. 古地理学报, 18(4): 595−604. doi: 10.7605/gdlxb.2016.04.044 |
[131] | 张启连, 赵辛金, 李玉坤, 等. 2020. 桂西二叠系铝土矿地球化学特征与沉积模式[J]. 地质论评, 66(4): 1043−1059. |
[132] | 张启连, 陈有斌, 刘希军, 等. 2022. 桂西铝土矿中火山灰特征及其地质意义[J]. 地质论评, 68(2): 531−550. |
[133] | 张容容, 蒋代华, 史鼎鼎, 等. 2020. 岩溶区棕色石灰土胶体对镉铅的等温吸附特性研究[J]. 农业环境科学学报, 39(3): 554−562. |
[134] | 张天兵, 王建强, 韩鹏, 等, 2023. 鄂尔多斯盆地南部凝灰岩地质特征及其对构造体制转换的制约[J]. 地质通报, 42(7): 1082−1097. |
[135] | 赵浩男, 邢乐才, 何洪涛, 等. 2022. 广西平果上二叠统合山组铝土矿中铌的赋存状态[J]. 矿物学报, 42(4): 453−460. |
[136] | 甄秉钱, 柴东浩. 1986. 晋豫(西)本溪期铝土矿成矿富集规律及其沉积环境探讨[J]. 沉积学报, 4(3): 115−126. |
[137] | 郑萌, 梁积伟, 冯振伟, 等. 2023. 鄂尔多斯盆地中部寒武纪岩相古地理研究[J]. 西北地质, 56(6): 352−368. doi: 10.12401/j.nwg.2023139 |
Tectonics of the western Guangxi (a) and distribution of the Permian platform-facies and bauxite deposits (b)
Columnar diagrams of the sampling section
Strata sequence of bauxite-bearing rock series of the Upper Permian Heshan Formation in western Guangxi
XRD patterns of minerals in bauxite ores
Classification of bauxite-bearing rock series by principle components
A−CN−K ternary diagram
Chondrite-normalized REE distribution patterns of bauxite-bearing rock series
The evolution of bauxite-bearing rock series