Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 1
Article Contents

GUO Guibin, YUAN Xiaoya, HUANG Lijin, SHUAI Qin, HU Shenghong, OUYANG Lei. Adsorption-Deposition Behavior of Typical Minerals on Antimony in Soil[J]. Rock and Mineral Analysis, 2025, 44(1): 127-139. doi: 10.15898/j.ykcs.202404210093
Citation: GUO Guibin, YUAN Xiaoya, HUANG Lijin, SHUAI Qin, HU Shenghong, OUYANG Lei. Adsorption-Deposition Behavior of Typical Minerals on Antimony in Soil[J]. Rock and Mineral Analysis, 2025, 44(1): 127-139. doi: 10.15898/j.ykcs.202404210093

Adsorption-Deposition Behavior of Typical Minerals on Antimony in Soil

More Information
  • Human activities such as mineral mining and coal combustion cause a large amount of antimony to enter into environmental soil. Exploring the adsorption deposition behavior of antimony on typical soil minerals is important for predicting the environmental fate of antimony and preventing its pollution. Thus, six kinds of commonly found metal hydroxides and clay minerals in soil (namely hematite, goethite, ferrihydrite, aluminum oxide, ramsdellite, and kaolinite) were selected to investigate the adsorption thermodynamic and kinetic behavior of Sb(Ⅲ) and Sb(Ⅴ) on their surfaces, and speculate the adsorption mechanism. The order of adsorption capacities (mg/g) of six soil minerals for Sb(Ⅲ)/Sb(Ⅴ) were as follows: ferrihydrite (101.4, 55.9)>ramsdellite (16.52, 7.58)>goethite (13.30, 5.67)>hematite (5.13, 3.70)>aluminum oxide (1.66, 1.69)>kaolinite (0.27, 0.51). Affected by the speciation of antimony and the surface potential of minerals, acidic conditions were favorable for the adsorption of Sb(Ⅴ), while the adsorption of Sb(Ⅲ) was less affected by pH. The Sb2O3 formed after deposition was characterizedin situ by Raman spectroscopy. Sb(Ⅴ) adsorbed on the mineral by adsorption at different concentrations, while Sb(Ⅲ) deposits on the mineral surface at higher concentrations. The BRIEF REPORT is available for this paper athttp://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202404210093.

  • 加载中
  • [1] Babushok V I, Deglmann P, Krämer R, et al. Influence of antimony-halogen additives on flame propagation[J]. Combustion Science and Technology, 2017, 189(2): 290−311. doi: 10.1080/00102202.2016.1208187

    CrossRef Google Scholar

    [2] Nishad P A, Bhaskarapillai A. Antimony, a pollutant of emerging concern: A review on industrial sources and remediation technologies[J]. Chemosphere, 2021, 277: 130252. doi: 10.1016/j.chemosphere.2021.130252

    CrossRef Google Scholar

    [3] Jia X, Ma L, Liu J, et al. Reduction of antimony mobility from Sb-rich smelting slag by Shewanella oneidensis: Integrated biosorption and precipitation[J]. Journal of Hazardous Materials, 2022, 426: 127385. doi: 10.1016/j.jhazmat.2021.127385

    CrossRef Google Scholar

    [4] Li J, Zheng B H, He Y, et al. Antimony contamination, consequences and removal techniques: A review[J]. Ecotoxicology and Environmental Safety, 2018, 156: 125−134. doi: 10.1016/j.ecoenv.2018.03.024

    CrossRef Google Scholar

    [5] Filella M, Belzile N, Chen Y W. Antimony in the environment: A review focused on natural waters: Ⅰ. Occurrence[J]. Earth-Science Reviews, 2002, 57(1−2): 125−176. doi: 10.1016/S0012-8252(01)00070-8

    CrossRef Google Scholar

    [6] He M, Wang X, Wu F, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012, 421: 41−50.

    Google Scholar

    [7] 牛斯达, 赵立群, 牛向龙, 等. 应用电子探针技术研究桂西南下雷锰矿床锰钾矿的结构特征[J]. 岩矿测试, 2022, 41(2): 239−250. doi: 10.15898/j.cnki.11-2131/td.202109040115

    CrossRef Google Scholar

    Niu S D, Zhao L Q, Niu X L, et al. The application of EPMA in the textural characterization of cryptomelane in the Xialei manganese deposit, Southwest Guangxi[J]. Rock and Mineral Analysis, 2022, 41(2): 239−250. doi: 10.15898/j.cnki.11-2131/td.202109040115

    CrossRef Google Scholar

    [8] Dupont D, Arnout S, Jones P T, et al. Antimony recovery from end-of-life products and industrial process residues: A critical review[J]. Journal of Sustainable Metallurgy, 2016, 2(1): 79−103. doi: 10.1007/s40831-016-0043-y

    CrossRef Google Scholar

    [9] Chen L, Ren B, Deng X, et al. Potential toxic heavy metals in village rainwater runoff of antimony mining area, China: Distribution, pollution sources, and risk assessment[J]. Science of the Total Environment, 2024(920): 170702. doi: https://doi.org/10.1016/j.scitotenv.2024.170702

    CrossRef Google Scholar

    [10] 孟郁苗, 胡瑞忠, 高剑峰, 等. 锑的地球化学行为以及锑同位素研究进展[J]. 岩矿测试, 2016, 35(4): 339−348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002

    CrossRef Google Scholar

    Meng Y M, Hu R Z, Gao J F, et al. Research progress on Sb geochemistry and Sb isotopes[J]. Rock and Mineral Analysis, 2016, 35(4): 339−348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002

    CrossRef Google Scholar

    [11] Su X, Wang X, Zhou Z, et al. Can antimony contamination in soil undermine the ecological contributions of earthworms?[J]. Science of the Total Environment, 2023, 904: 166305. doi: 10.1016/j.scitotenv.2023.166305

    CrossRef Google Scholar

    [12] Vidya C S N, Shetty R, Vaculíková M, et al. Antimony toxicity in soils and plants, and mechanisms of its alleviation[J]. Environmental and Experimental Botany, 2022, 202: 104996. doi: 10.1016/j.envexpbot.2022.104996

    CrossRef Google Scholar

    [13] Herath I, Vithanage M, Bundschuh J. Antimony as a global dilemma: Geochemistry, mobility, fate and transport[J]. Environmental Pollution, 2017, 223: 545−559. doi: 10.1016/j.envpol.2017.01.057

    CrossRef Google Scholar

    [14] Caplette J N, Wilson S C, Mestrot A. Antimony release and volatilization from organic-rich and iron-rich submerged soils[J]. Journal of Hazardous Materials, 2024, 470: 134230. doi: 10.1016/j.jhazmat.2024.134230

    CrossRef Google Scholar

    [15] Chen L, Han Y, Li W, et al. Removal of Sb(Ⅴ) from wastewater via siliceous ferrihydrite: Interactions among ferrihydrite, coprecipitated Si, and adsorbed Sb(Ⅴ)[J]. Chemosphere, 2022, 291: 133043. doi: 10.1016/j.chemosphere.2021.133043

    CrossRef Google Scholar

    [16] Kumar R, Jing C, Yan L. A critical review on arsenic and antimony adsorption and transformation on mineral facets[J/OL]. Journal of Environmental Sciences (2024-02-01). https://doi.org/10.1016/j.jes.2024.01.016

    Google Scholar

    [17] Zhou W, Zhou J, Feng X, et al. Antimony isotope fractionation revealed from EXAFS during adsorption on Fe(oxyhydr) oxides[J]. Environmental Science & Technology, 2023, 57(25): 9353−9361. doi: 10.1021/acs.est.3c01906

    CrossRef Google Scholar

    [18] Hei E, He M, Zhang E, et al. Risk assessment of antimony-arsenic contaminated soil remediated using zero-valent iron at different pH values combined with freeze-thaw cycles[J]. Environmental Monitoring and Assessment, 2024, 196(5): 1−17. doi: 10.1007/s10661-024-12601-6

    CrossRef Google Scholar

    [19] Peng L, Wang N, Xiao T, et al. A critical review on adsorptive removal of antimony from waters: Adsorbent species, interface behavior and interaction mechanism[J]. Chemosphere, 2023: 138529.

    Google Scholar

    [20] Sun Q, Liu C, Alves M E, et al. The oxidation and sorption mechanism of Sb on δ-MnO2[J]. Chemical Engineering Journal, 2018, 342: 429−437. doi: 10.1016/j.cej.2018.02.091

    CrossRef Google Scholar

    [21] Nie J, Yao Z, Shao P, et al. Revisiting the adsorption of antimony on manganese dioxide: The overlooked dissolution of manganese[J]. Chemical Engineering Journal, 2022, 429: 132468. doi: 10.1016/j.cej.2021.132468

    CrossRef Google Scholar

    [22] Wu Y, Sun G, Huang J H, et al. Antimony isotopic fractionation during intensive chemical weathering of basalt in the tropics[J]. Geochimica et Cosmochimica Acta, 2024, 367: 29−40. doi: 10.1016/j.gca.2023.12.029

    CrossRef Google Scholar

    [23] Zhou W, Zhou A, Wen B, et al. Antimony isotope fractionation during adsorption on aluminum oxides[J]. Journal of Hazardous Materials, 2022, 429: 128317. doi: 10.1016/j.jhazmat.2022.128317

    CrossRef Google Scholar

    [24] Xi J, He M, Lin C. Adsorption of antimony(Ⅲ) and antimony(V) on bentonite: Kinetics, thermodynamics and anion competition[J]. Microchemical Journal, 2011, 97(1): 85−91. doi: 10.1016/j.microc.2010.05.017

    CrossRef Google Scholar

    [25] Dousova B, Lhotka M, Filip J, et al. Removal of arsenate and antimonate by acid-treated Fe-rich clays[J]. Journal of Hazardous Materials, 2018, 357: 440−448. doi: 10.1016/j.jhazmat.2018.06.028

    CrossRef Google Scholar

    [26] Zhang Y, Ding C, Gong D, et al. A review of the environmental chemical behavior, detection and treatment of antimony[J]. Environmental Technology & Innovation, 2021, 24: 102026. doi: 10.1016/j.eti.2021.102026

    CrossRef Google Scholar

    [27] Tang H, Hassan M U, Nawaz M, et al. A review on sources of soil antimony pollution and recent progress on remediation of antimony polluted soils[J]. Ecotoxicology and Environmental Safety, 2023, 266: 115583. doi: 10.1016/j.ecoenv.2023.115583

    CrossRef Google Scholar

    [28] Schwertmann U, Cornell R M. Iron oxides in the laboratory: Preparation and characterization[M]. John Wiley & Sons, 2008.

    Google Scholar

    [29] Balboni E, Smith K F, Moreau L M, et al. Transformation of ferrihydrite to goethite and the fate of plutonium[J]. ACS Earth and Space Chemistry, 2020, 4(11): 1993−2006. doi: 10.1021/acsearthspacechem.0c00195

    CrossRef Google Scholar

    [30] 崔婷, 叶欣, 朱霞萍, 等. 土壤铁锰氧化物形态测定及吸附Sb(Ⅲ)的主控因子研究[J]. 岩矿测试, 2023, 42(1): 167−176. doi: 10.15898/j.cnki.11-2131/td.202111250187

    CrossRef Google Scholar

    Cui T, Ye X, Zhu X P, et al. Determination of various forms of iron and manganese oxides and the main controlling factors of absorption of Sb(Ⅲ) in soil[J]. Rock and Mineral Analysis, 2023, 42(1): 167−176. doi: 10.15898/j.cnki.11-2131/td.202111250187

    CrossRef Google Scholar

    [31] Wang X, He M, Lin C, et al. Antimony(Ⅲ) oxidation and antimony(V) adsorption reactions on synthetic manganite[J]. Geochemistry, 2012, 72: 41−47. doi: 10.1016/j.chemer.2012.02.002

    CrossRef Google Scholar

    [32] Sukul P, Lamshöft M, Zühlke S, et al. Sorption and desorption of sulfadiazine in soil and soil-manure systems[J]. Chemosphere, 2008, 73(8): 1344−1350. doi: 10.1016/j.chemosphere.2008.06.066

    CrossRef Google Scholar

    [33] Wu T, Liu C, Cui P, et al. Kinetics of coupled sorption and abiotic oxidation of antimony(Ⅲ) in soils[J]. Geoderma, 2023, 434: 116486. doi: 10.1016/j.geoderma.2023.116486

    CrossRef Google Scholar

    [34] Liu X, Wang Y, Xiang H, et al. Unveiling the crucial role of iron mineral phase transformation in antimony(V) elimination from natural water[J]. Eco-Environment & Health, 2023, 2(3): 176−83. doi: 10.1016/j.eehl.2023.07.006

    CrossRef Google Scholar

    [35] Mukhopadhyay R, Sarkar B, Barman A, et al. Arsenic adsorption on modified clay minerals in contaminated soil and water: Impact of pH and competitive anions[J]. Clean-Soil, Air, Water, 2021, 49(4): 2000259. doi: 10.1002/clen.202000259

    CrossRef Google Scholar

    [36] Li Y, Liu J, Wang Y, et al. Contribution of components in natural soil to Cd and Pb competitive adsorption: Semi-quantitative to quantitative analysis[J]. Journal of Hazardous Materials, 2023, 441: 129883. doi: 10.1016/j.jhazmat.2022.129883

    CrossRef Google Scholar

    [37] Yan L, Chan T, Jing C. Mechanistic study for antimony adsorption and precipitation on hematite facets[J]. Environmental Science & Technology, 2022, 56(5): 3138−3146. doi: 10.1021/acs.est.1c07801

    CrossRef Google Scholar

    [38] 随志磊. 极端条件下几种稀土盐和氧化锑的相变和发光研究[D]. 合肥: 中国科学技术大学, 2017: 10−50.

    Google Scholar

    Sui Z L. Studies on phase transitions and photo-luminescence of several rare earth sands and antimony trioxide in extreme conditions[D]. Hefei: University of Science and Technology of China, 2017: 10−50.

    Google Scholar

    [39] Pereira A L J, Gracia L, Santamaría-Pérez D, et al. Structural and vibrational study of cubic Sb2O3 under high pressure[J]. Physical Review B, 2012, 85(17): 174108. doi: 10.1103/PhysRevB.85.174108

    CrossRef Google Scholar

    [40] Abrashev M V, Ivanov V G, Stefanov B S, et al. Raman spectroscopy of alpha-FeOOH (goethite) near antiferromagnetic to paramagnetic phase transition[J]. Journal of Applied Physics, 2020, 127(20): 205108.

    Google Scholar

    [41] de Faria D L A, Lopes F N. Heated goethite and natural hematite: Can Raman spectroscopy be used to differentiate them?[J]. Vibrational Spectroscopy, 2007, 45(2): 117−121. doi: 10.1016/j.vibspec.2007.07.003

    CrossRef Google Scholar

    [42] Chistyakova N, Antonova A, Elizarov I, et al. Mössbauer, nuclear forward scattering, and Raman spectroscopic approaches in the investigation of bioinduced transformations of mixed-valence antimony oxide[J]. The Journal of Physical Chemistry A, 2021, 125(1): 139−145. doi: 10.1021/acs.jpca.0c08865

    CrossRef Google Scholar

    [43] Frost R L, Bahfenne S. Raman spectroscopic study of the antimonate mineral brizziite NaSbO3[J]. Radiation Effects and Defects in Solids, 2010, 165(3): 206−210. doi: 10.1080/10420150903513046

    CrossRef Google Scholar

    [44] Zahn D R T. Vibrational spectroscopy of bulk and supported manganese oxides[J]. Physical Chemistry Chemical Physics, 1999, 1(1): 185−190. doi: 10.1039/A807821A

    CrossRef Google Scholar

    [45] Julien C, Massot M, Rangan S, et al. Study of structural defects in γ-MnO2 by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2002, 33(4): 223−228. doi: 10.1002/jrs.838

    CrossRef Google Scholar

    [46] Shim S H, Duffy T S. Raman spectroscopy of Fe2O3 to 62GPa[J]. American Mineralogist, 2002, 87(2−3): 318−326. doi: 10.2138/am-2002-2-314

    CrossRef Google Scholar

    [47] Marshall C P, Dufresne W J B. Resonance Raman and polarized Raman scattering of single-crystal hematite[J]. Journal of Raman Spectroscopy, 2022, 53(5): 947−955. doi: 10.1002/jrs.6309

    CrossRef Google Scholar

    [48] Basu A, Mookherjee M, Clapp S, et al. High-pressure Raman scattering and X-ray diffraction study of kaolinite, Al2Si2O5(OH)4[J]. Applied Clay Science, 2023, 245: 107144.

    Google Scholar

    [49] Frost R L, Fredericks P M, Kloprogge J T, et al. Raman spectroscopy of kaolinites using different excitation wavelengths[J]. Journal of Raman Spectroscopy, 2001, 32(8): 657−663. doi: 10.1002/jrs.722

    CrossRef Google Scholar

    [50] Delbé K, de Sousa C, Grizet F, et al. Determination of the pressure dependence of Raman mode for an alumina-glass pair in hertzian contact[J]. Materials, 2022, 15(23): 8645. doi: 10.3390/ma15238645

    CrossRef Google Scholar

    [51] Misra A, Bist H D, Navati M S, et al. Thin film of aluminum oxide through pulsed laser deposition: A micro-Raman study[J]. Materials Science and Engineering B, 2001, 79(1): 49−54. doi: 10.1016/S0921-5107(00)00554-7

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(240) PDF downloads(44) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint