Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 1
Article Contents

XU Jianye, WANG Fufang, LIANG Handong, LI Zhanping. Microstructure Characterization and Mineral Morphology of Tea-Dust Glaze Made in the Ding Kiln of the Northern Song Dynasty[J]. Rock and Mineral Analysis, 2025, 44(1): 115-126. doi: 10.15898/j.ykcs.202401290011
Citation: XU Jianye, WANG Fufang, LIANG Handong, LI Zhanping. Microstructure Characterization and Mineral Morphology of Tea-Dust Glaze Made in the Ding Kiln of the Northern Song Dynasty[J]. Rock and Mineral Analysis, 2025, 44(1): 115-126. doi: 10.15898/j.ykcs.202401290011

Microstructure Characterization and Mineral Morphology of Tea-Dust Glaze Made in the Ding Kiln of the Northern Song Dynasty

More Information
  • The tea-dust glaze ancient porcelain is one of the earliest crystalline glazes, which is rarely studied deeply because of its rarity. In this study, the mineral crystals in tea-dust glaze made in the Ding Kiln of the Northern Song Dynasty were analyzed by optical microscope (OM), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), scanning electron microscopy coupled with an X-ray energy dispersive spectrometer (SEM-EDS), laser confocal Raman spectrometer (LRS), and high-resolution time of flight-secondary ion mass spectrometry (ToF-SIMS). The results show that the main crystal phase in the glaze is the same as that of the Longquanwu Kiln in the Liao and Jin Dynasty, which is anorthite and augite. The overall performance of the glaze is that the sauce-black glaze matrix is rich in iron (Fe2O3 mean 9.73%) and the mineral crystal is rich in iron (Fe2O3 mean 11.33%). In addition to α-Fe2O3 crystals, Fe3O4 crystals and other recrystallized minerals after melting, the glaze also has pleonaste, residual kaolinite and other unmelted minerals from raw glaze materials. The residual kaolinite shows that the firing temperature of the samples in this study was most likely below 1200℃. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202401290011.

  • 加载中
  • [1] 陈代璋, 袁家铮, 刘光辉. 结晶釉的绿辉石研究[J]. 地质论评, 1996, 42(2): 129−135. doi: 10.3321/j.issn:0371-5736.1996.02.005

    CrossRef Google Scholar

    Chen D Z, Yuan J Z, Liu G H. Green pyroxene studies of crystalline glazes[J]. Geological Review, 1996, 42(2): 129−135. doi: 10.3321/j.issn:0371-5736.1996.02.005

    CrossRef Google Scholar

    [2] Tao S, Liu S, Yuan Y, et al. Micro-structural and compositional study: ε-Fe2O3 crystals in the Hare’s Fur Jian Ware[J]. Crystals, 2022, 12(3): 367−371. doi: 10.21203/rs.3.rs-1130777/v1

    CrossRef Google Scholar

    [3] Wen R, Wang D, Wang L H, et al. The colouring mechanism of the Brown glaze porcelain of the Yaozhou Kiln in the Northern Song Dynasty[J]. Ceramics International, 2019, 45(8): 10589−10595. doi: 10.1016/j.ceramint.2019.02.125

    CrossRef Google Scholar

    [4] Chen X Y, Li W D, Xu C S, et al. Angle dependence of Jian bowl color and its coloring mechanism[J]. Journal of the European Ceramic Society, 2022, 42(2): 693−706. doi: 10.1016/j.jeurceramsoc.2021.10.057

    CrossRef Google Scholar

    [5] Wu B, Zhao W, Ren X, et al. Firing process and colouring mechanism of black glaze and brown glaze porcelains from the Yuan and Ming dynasties from the Qingliang Temple kiln in Baofeng, Henan, China[J]. Ceramics International, 2021, 47(23): 32817−32827. doi: 10.1016/j.ceramint.2021.08.178

    CrossRef Google Scholar

    [6] Li X Y, Lu J H, Yu X L, et al. Imitation of ancient black-glazed Jian bowls (Yohen Tenmoku): Fabrication and characterization[J]. Ceramics International, 2016, 42(14): 15269−15273. doi: 10.1016/j.ceramint.2016.06.027

    CrossRef Google Scholar

    [7] 黄瑞福, 陈显求, 陈士萍, 等. 唐代茶叶末瓷的物理化学基础研究[J]. 陶瓷学报, 1993, 14(2): 11−20.

    Google Scholar

    Huang R F, Chen X Q, Chen S P, et al. The physico-chemistry investigation on Tang Dynasty tea dust porcelain[J]. Journal of Ceramics, 1993, 14(2): 11−20.

    Google Scholar

    [8] 张福康. 中国古陶瓷的科学[M]. 上海: 上海人民美术出版社, 2000: 82−91.

    Google Scholar

    [9] 陈尧成, 张筱薇, 黄秀纯, 等. 北京龙泉务窑辽金代黑瓷的制作工艺和显微结构研究[J]. 中国陶瓷, 1999, 35(6): 38−42.

    Google Scholar

    Chen Y C, Zhang X W, Huang X C, et al. Study on microstructure and technology of black porcelain of Beijing Longouanwu Kiln in Liao and Jin Dynasties[J]. China Ceramics, 1999, 35(6): 38−42.

    Google Scholar

    [10] Bao Z A, Yuan H L, Wen R, et al. The fast and direct characterization of blue-and-white porcelain glaze from Jingdezhen by laser ablation-inductively coupled plasma mass spectrometry[J]. Analytical Methods, 2015, 7(12): 5034−5040. doi: 10.1039/C5AY00875A

    CrossRef Google Scholar

    [11] 何旭科, 栾燕, 孙晓辉, 等. 辽宁弓长岭铁矿床蚀变围岩中石榴石LA-ICP-MS面扫描分析及元素分布特征[J]. 岩矿测试, 2023, 42(4): 707−720. doi: 10.15898/j.ykcs.202211070212

    CrossRef Google Scholar

    He X K, Luan Y, Sun X H, et al. LA-ICP-MS Mapping and element distribution characteristics of garnet from the altered wall-rock of the Gongchangling iron deposit in Liaoning Province[J]. Rock and Mineral Analysis, 2023, 42(4): 707−720. doi: 10.15898/j.ykcs.202211070212

    CrossRef Google Scholar

    [12] 何焘, 张晨西, 张文, 等. 高空间分辨率LA-ICP-MS测定硅酸盐玻璃标准物质中42种微量元素[J]. 岩矿测试, 2023, 42(5): 983−995. doi: 10.15898/j.ykcs.202308090134

    CrossRef Google Scholar

    He T, Zhang C X, Zhang W, et al. Determination of 42 trace elements in silicate glass reference materials by high spatial resolution LA-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(5): 983−995. doi: 10.15898/j.ykcs.202308090134

    CrossRef Google Scholar

    [13] 陈晓峰, 胡芳菲, 张煦, 等. 激光剥蚀-电感耦合等离子体质谱法测定纯铜中铁锌砷锡锑铅铋[J]. 冶金分析, 2018, 38(12): 1−6. doi: 10.13228/j.boyuan.issn1000-7571.010363

    CrossRef Google Scholar

    Chen X F, Hu F F, Zhang X, et al. Determination of iron, zinc, arsenic, tin, antimony, lead and bismuth in pure copper by laser ablation inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(12): 1−6. doi: 10.13228/j.boyuan.issn1000-7571.010363

    CrossRef Google Scholar

    [14] 付东旭, 郑令娜, 刘金辉, 等. 激光剥蚀-电感耦合等离子体质谱定量分析单细胞中的银纳米颗粒[J]. 分析化学, 2019, 47(9): 1390−1394. doi: 10.19756/j.issn.0253-3820.191283

    CrossRef Google Scholar

    Fu D X, Zheng L N, Liu J H, et al. Quantitative analysis of silver nanoparticles in single cell by laser ablation inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(9): 1390−1394. doi: 10.19756/j.issn.0253-3820.191283

    CrossRef Google Scholar

    [15] 赵峰, 王占明, 王挺, 等. 激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)法测定涂层氧化锆颗粒铌层中24种微量杂质元素[J]. 中国无机分析化学, 2023, 13(4): 374−381. doi: 10.3969/j.issn.2095-1035.2023.04.012

    CrossRef Google Scholar

    Zhao F, Wang Z M, Wang T, et al. Determination of 24 trace impurities in niobium coating of zirconia particles by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(4): 374−381. doi: 10.3969/j.issn.2095-1035.2023.04.012

    CrossRef Google Scholar

    [16] 周帆, 李明, 柴辛娜, 等. 非破坏性开放式激光剥蚀电感耦合等离子体质谱法原位测定大尺寸陶瓷样品主微量元素组成[J]. 岩矿测试, 2021, 40(1): 33−41. doi: 10.15898/j.cnki.11-2131/td.202005240075

    CrossRef Google Scholar

    Zhou F, Li M, Chai X N, et al. In-situ non-destructive determination of major and trace elements in large size ceramic samples by open laser ablation inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2021, 40(1): 33−41. doi: 10.15898/j.cnki.11-2131/td.202005240075

    CrossRef Google Scholar

    [17] 李展平. 飞行时间二次离子质谱(TOF-SIMS)分析技术[J]. 矿物岩石地球化学通报, 2020, 39(6): 1173−1190. doi: 10.19658/j.issn.1007-2802.2020.39.104

    CrossRef Google Scholar

    Li Z P. Time-of-flight secondary ion mass spectro-metry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(6): 1173−1190. doi: 10.19658/j.issn.1007-2802.2020.39.104

    CrossRef Google Scholar

    [18] 阿尔弗来德·贝宁豪文, 查良镇. 飞行时间二次离子质谱—强有力的表面、界面和薄膜分析手段[J]. 真空, 2002(5): 10−14. doi: 10.3969/j.issn.1002-0322.2002.05.001

    CrossRef Google Scholar

    Benninghoven A, Zha L Z. TOF-SIMS—A powerful tool for practical surface, interface and thin film analysis[J]. Vacuum, 2002(5): 10−14. doi: 10.3969/j.issn.1002-0322.2002.05.001

    CrossRef Google Scholar

    [19] Timms N E, Kirkland C L, Cavosie A J, et al. Shocked titanite records Chicxulub hydrothermal alteration and impact age[J]. Geochimica et Cosmochimica Acta, 2020, 281: 12−30. doi: 10.1016/j.gca.2020.04.031

    CrossRef Google Scholar

    [20] 梁汉东. 金/硫团簇非共价键相互作用的研究与意义[J]. 中国矿业大学学报, 2001, 30(6): 593−599. doi: 10.3321/j.issn:1000-1964.2001.06.016

    CrossRef Google Scholar

    Liang H D. Investigation into non-covalent interaction between gold and sulfur clusters by TOF-SIMS[J]. Journal of China University of Mining & Technology, 2001, 30(6): 593−599. doi: 10.3321/j.issn:1000-1964.2001.06.016

    CrossRef Google Scholar

    [21] 梁汉东, 刘敦一. 金硫团簇负离子组成特征的探讨[J]. 物理化学学报, 2001, 17(9): 859−864. doi: 10.3866/PKU.WHXB20010921

    CrossRef Google Scholar

    Liang H D, Liu D Y. Compositional and constitutional characterization of Au-S cluster ions[J]. Acta Physico-Chimica Sinica, 2001, 17(9): 859−864. doi: 10.3866/PKU.WHXB20010921

    CrossRef Google Scholar

    [22] Liang H D. Secondary ion mass spectrometry of high-sulfur coal: Observation and interpretation of polysulfur ions[J]. Chinese Science Bulletin, 1999, 44(13): 1242−1245. doi: 10.1007/BF02885975

    CrossRef Google Scholar

    [23] Liang H D, Liang Y C, Gardella J A, et al. Potential release of hydrogen fluoride from domestic coal in endemic fluorosis area in Guizhou, China[J]. Chinese Science Bulletin, 2011, 56(22): 2301−2303. doi: 10.1007/s11434-011-4560-6

    CrossRef Google Scholar

    [24] Zhang T, Meng X, Bai Y, et al. Profiling the organic cation-dependent degradation of organolead halide pero-vskite Solar cells[J]. Journal of Materials Chemistry A, 2017, 5(3): 1103−1111. doi: 10.1039/C6TA09687E

    CrossRef Google Scholar

    [25] White L J, Taylor A J, Faulk D M, et al. The impact of detergents on the tissue decellularization process: A ToF-SIMS study[J]. Acta Biomaterialia, 2017, 50: 207−219. doi: 10.1016/j.actbio.2016.12.033

    CrossRef Google Scholar

    [26] 刘婕, 陈相龙, 梁汉东, 等. 新疆汉代羊毛织物染料的飞行时间二次离子质谱表征[J]. 质谱学报, 2024, 45(3): 386−395. doi: 10.7538/zpxb.2024.1009

    CrossRef Google Scholar

    Liu J, Chen X L, Liang H D, et al. Characterization of dyes for Han Dynasty wool fabrics in Xinjiang by time-of-flight secondary ion mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2024, 45(3): 386−395. doi: 10.7538/zpxb.2024.1009

    CrossRef Google Scholar

    [27] Ingo G M, Riccucci C, Pascucci M, et al. Combined use of FE-SEM plus EDS, ToF-SIMS, XPS, XRD and OM for the study of ancient gilded artefacts[J]. Applied Surface Science, 2018, 446: 168−176. doi: 10.1016/j.apsusc.2018.01.278

    CrossRef Google Scholar

    [28] Kaluzna-czaplinska J, Rosiak A, Grams J, et al. The studies of archaeological pottery with the use of selected analytical techniques[J]. Critical Reviews in Analytical Chemistry, 2017, 47(6): 490−498. doi: 10.1080/10408347.2017.1334534

    CrossRef Google Scholar

    [29] Felicissimo M P, Peixoto J L, Bittencourt C, et al. SEM, EPR and ToF-SIMS analyses applied to unravel the technology employed for pottery-making by pre-colonial Indian tribes from Pantanal, Brazil[J]. Journal of Archaeological Science, 2010, 37(9): 2179−2187. doi: 10.1016/j.jas.2010.03.015

    CrossRef Google Scholar

    [30] 徐子琪, 赵煊赫, 梁汉东, 等. 宋代黑釉茶盏油滴的飞行时间二次离子质谱表征[J]. 质谱学报, 2023, 44(1): 25−33. doi: 10.7538/zpxb.2022.0113

    CrossRef Google Scholar

    Xu Z Q, Zhao X H, Liang H D, et al. Characterization of oil spots on black-glazed teabowl made in Song Dynasty by time-of-flight secondary ion mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(1): 25−33. doi: 10.7538/zpxb.2022.0113

    CrossRef Google Scholar

    [31] 刘婕, 梁汉东. 华北唐宋古瓷窑兴起的自然条件: 煤系地层出露[J]. 中国煤炭地质, 2024, 36(1): 12−17. doi: 10.3969/j.issn.1674-1803.2024.01.02

    CrossRef Google Scholar

    Liu J, Liang H D. Natural condition for the rise of ancient porcelain kilns of the Tang and Song Dynasties in North China: Outcrops of coal strata[J]. Coal Geology of China, 2024, 36(1): 12−17. doi: 10.3969/j.issn.1674-1803.2024.01.02

    CrossRef Google Scholar

    [32] Thompson J M, Meffre S, Danyushevsky L. Impact of air, laser pulse width and influence on U-Pb dating of zircons by LA-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33: 221−230. doi: 10.1039/C7JA00357A

    CrossRef Google Scholar

    [33] 顾幸勇, 方豪, 宋仪杰. 茶叶末结晶釉主晶相的研究[J]. 中国陶瓷, 1989, 25(2): 6−9.

    Google Scholar

    Gu X Y, Fang H, Song Y J. A study on principal crystalline phase of tea-dust crystalline glaze[J]. China Ceramics, 1989, 25(2): 6−9.

    Google Scholar

    [34] Li W, Luo H, Li J, et al. Studies on the microstructure of the black-glazed bowl sherds excavated from the Jian Kiln site of ancient China[J]. Ceramics International, 2008, 34(34): 1473−1480. doi: 10.1016/j.ceramint.2007.04.004

    CrossRef Google Scholar

    [35] Ma Q L, Xu S Q, Wang J L, et al. Integrated analysis of a black-glazed porcelain bowl in Tushan Kiln dated back to Song Dynasty, China[J]. Materials Chemistry and Physics, 2020, 242: 122213. doi: 10.1016/j.matchemphys.2019.122213

    CrossRef Google Scholar

    [36] 陈显求, 陈士萍, 周学林, 等. 金、元时期旬邑窑茶叶末瓷的研究[J]. 陶瓷学报, 1996, 17(3): 15−24.

    Google Scholar

    Chen X Q, Chen S P, Zhou X L, et al. The study on Jin and Yuan Dynasties tea dust wares from Xunyi Kiln Site[J]. Journal of Ceramics, 1996, 17(3): 15−24.

    Google Scholar

    [37] Wang M, Wang T, Wang F, et al. Raman study of rusty oil spotted glaze produced in Linfen Kilns (Shanxi Province, AD1115–1368)[J]. Journal of Raman Spectroscopy, 2020, 53(3): 582−592. doi: 10.1002/jrs.6229

    CrossRef Google Scholar

    [38] Wang T, Hole C, Ren Z, et al. Morphological and structural study of crystals in black-to-brown glazes of Yaozhou ware (Song Dynasty) using imaging and spectroscopic techniques[J]. Journal of the European Ceramic Society, 2021, 41(12): 6049−6058. doi: 10.1016/j.jeurceramsoc.2021.05.025

    CrossRef Google Scholar

    [39] 王秀玲, 侯亮亮, 王敏力, 等. 山西大同浑源窑出土黑釉剔花瓷片的科技分析[J]. 中国陶瓷, 2022, 58(8): 53−58. doi: 10.16521/j.cnki.issn.1001-9642.2022.08.009

    CrossRef Google Scholar

    Wang X L, Hou L L, Wang M L, et al. Scientific and technological analysis of black-glazed carving ware of Hunyuan Kilns in Datong, Shanxi Province[J]. China Ceramics, 2022, 58(8): 53−58. doi: 10.16521/j.cnki.issn.1001-9642.2022.08.009

    CrossRef Google Scholar

    [40] 付玲芝. 辽宁省弓长岭铁矿磁铁矿-赤铁矿转变机制研究[D]. 长春: 吉林大学, 2016: 58−62.

    Google Scholar

    Fu L Z. Study on mechanism of transforming between magnetite and hematite of Gongchangling iron deposit in Liaoning Province[D]. Changchun: Jilin University, 2016: 58-62.

    Google Scholar

    [41] 程桂亮, 姚奉洪, 杨开玉, 等. 耐热陶瓷的研究[J]. 中国陶瓷, 1988(1): 22−28. doi: 10.16521/j.cnki.issn.1001-9642.1988.01.003

    CrossRef Google Scholar

    Cheng G L, Yao F H, Yang K Y, et al. A study on temper-ware[J]. China Ceramics, 1988(1): 22−28. doi: 10.16521/j.cnki.issn.1001-9642.1988.01.003

    CrossRef Google Scholar

    [42] Wang M, Zhu T Q, Ding X, et al. Composition comparison of Zhejiang Longquan celadon and its imitation in Dapu Kiln of Guangdong in the Ming Dynasty of China (1368—1644 CE) by LA-ICP-MS[J]. Ceramic International, 2018, 44(2): 1785−1796. doi: 10.1016/j.ceramint.2017.10.112

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(282) PDF downloads(41) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint