Citation: | WANG Xiao, LIU Jiufen, GAN Liming, LI Ronghua, WANG Xi, WEI Xin, HE Tao. Simultaneous Determination of Au and Associated Elements Ag, Cu, Pb, Zn, As and Sb in Gold Ore by ICP-MS with Hypochloric Acid Oxidation[J]. Rock and Mineral Analysis, 2025, 44(2): 268-278. doi: 10.15898/j.ykcs.202403130044 |
Gold ore contains a certain amount of gold, silver, copper, lead, zinc, arsenic, and antimony. Gold needs to be determined after roasting, digestion and enrichment; arsenic and antimony are lost after roasting, while silver, copper, lead, zinc, arsenic and antimony need to be separately determined, which is extremely cumbersome. The experiment utilized the oxidizing properties of hypochlorous acid to oxidize carbonaceous materials and sulfides in a nitric acid medium instead of sample roasting. Combined with offline internal standards, a method was established for the simultaneous determination of gold, silver, copper, lead, zinc, arsenic, and antimony by ICP-MS. The amount of hypochlorous acid, digestion time, internal standard selection, and interfering elements were optimized. The results showed that the carbonaceous and sulfides materials were oxidized under the conditions of 10.0000g of the sample, 20mL of nitric acid and 5mL of hypochlorous acid with using a heating plate to deal with them until near-dryness. According to the experimental method, gold, silver, copper, lead, zinc, arsenic, and antimony were determined in five different types of gold ore samples, the results were consistent with the national standard method, and the relative standard deviations (RSDs, n=7) were less than 4.71%. This method solves the problem of simultaneous determination of gold, silver, copper, lead, zinc, arsenic and antimony, which is simple and convenient. The BRIEF REPORT is available for this paper at
[1] | Kerr R A. Is the world tottering on the precipice of peak gold?[J]. Science, 2012, 335(6072): 1038−1039. doi: 10.1126/science.335.6072.1038 |
[2] | 王安建, 袁小晶. 大国竞争背景下的中国战略性关键矿产资源安全思考[J]. 中国科学院院刊, 2022, 37(11): 1550−1559. doi: 10.16418/j.issn.1000-3045.20220817001 Wang A J, Yuan X J. Security of China’s strategic and critical minerals under background of great power competition[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(11): 1550−1559. doi: 10.16418/j.issn.1000-3045.20220817001 |
[3] | 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189−1209. doi: 10.19762/j.cnki.dizhixuebao.2019186 Wang D H. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6): 1189−1209. doi: 10.19762/j.cnki.dizhixuebao.2019186 |
[4] | 王楠, 孙旭东, 霍地. 小火试金分离富集火焰原子吸收光谱法测定矿石样品中的金[J]. 光谱学与光谱分析, 2019, 39(8): 2614−2617. doi: 10.3964/j.issn.1000-0593(2019)08-2614-04 Wang N, Sun X D, Huo D. Determination of gold in mineral samples by flame atomic absorption spectrometry after the separation and preconcentration with small fire assay[J]. Spectroscopy and Spectral Analysis, 2019, 39(8): 2614−2617. doi: 10.3964/j.issn.1000-0593(2019)08-2614-04 |
[5] | 郭晓瑞, 樊蕾, 王甜甜, 等. 锑试金-微波消解-高分辨率连续光源火焰原子吸收光谱法测定金矿石中金[J]. 冶金分析, 2022, 42(12): 45−51. doi: 10.13228/j.boyuan.issn1000-7571.011859 Guo X R, Fan L, Wang T T, et al. Determination of gold in gold ore by high resolution continuum source flame atomic absorption spectrometry combined with antimony fire assay and microwave digestion[J]. Metallurgical Analysis, 2022, 42(12): 45−51. doi: 10.13228/j.boyuan.issn1000-7571.011859 |
[6] | 孙启亮, 毛香菊, 郭晓瑞, 等. 铅试金富集-高分辨率连续光源石墨炉原子吸收光谱法测定地球化学样品中痕量金铂钯[J]. 冶金分析, 2021, 41(7): 10−16. doi: 10.13228/j.boyuan.issn1000-7571.011416 Sun Q L, Mao X J, Guo X R, et al. Determination of trace gold, platinum and palladium in geological samples by lead fire assay pre-concentration high resolution continuum source graphite furnace atomic absorption spectrometry[J]. Metallurgical Analysis, 2021, 41(7): 10−16. doi: 10.13228/j.boyuan.issn1000-7571.011416 |
[7] | 王小强, 赵亚男, 梁倩, 等. 泡沫塑料富集-火焰原子吸收光谱法测定金矿石中金[J]. 中国无机分析化学, 2022, 12(3): 110−114. doi: 10.3969/j.issn.2095-1035.2022.03.016 Wang X Q, Zhao Y N, Liang Q, et al. Determination of gold in gold ores by flame atomic absorption spectrometry with foam plastics enrichment[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(3): 110−114. doi: 10.3969/j.issn.2095-1035.2022.03.016 |
[8] | Ramesh S L, Anjaiah K V, Mathur R, et al. Determination of gold in rocks, ores, and other geological materials by atomic absorption techniques[J]. Atomic Spectroscopy, 2001, 22(1): 263−269. |
[9] | Volzhenin A V, Petrova N I, Medvedev N S, et al. Determination of gold and palladium in rocks and ores by atomic absorption spectrometry using two-stage probe atomization[J]. Journal of Analytical Chemistry, 2017, 72(2): 156−162. doi: 10.1134/s1061934817020150 |
[10] | 王鹏, 门倩妮, 甘黎明, 等. 基于RSM模型对石墨炉原子吸收法分析痕量金测定条件的优化研究[J]. 光谱学与光谱分析, 2022, 42(8): 2334−2339. doi: 10.3964/j.issn.1000-0593(2022)08-2334-06 Wang P, Men Q N, Gan L M, et al. Research on optimization of determination conditions for trace gold analysis by graphite furnace atomic absorption spectrometry based on RSM model[J]. Spectroscopy and Spectral Analysis, 2022, 42(8): 2334−2339. doi: 10.3964/j.issn.1000-0593(2022)08-2334-06 |
[11] | Dyachenko E N, Kolpakova N A, Oskina U A. Determination of gold by stripping voltammetry in platinum gold ore mineral raw materials on grafite electrode modified by bismuth[J]. Procedia Chemistry, 2014, 10: 47−50. doi: 10.1016/j.proche.2014.10.010 |
[12] | Kolpakova N A, Oskina Y A, Panova S M, et al. Determination of Au, Pt, Pd in gold ore mineral raw materials by stripping voltammetry[J]. MATEC Web of Conferences, 2016, 85: 01012. doi: 10.1051/matecconf/20168501012 |
[13] | 马景治, 李策, 张明杰, 等. 王水溶样-电感耦合等离子体质谱(ICP-MS)法测定地质样品中的金[J]. 中国无机分析化学, 2020, 10(2): 48−51. doi: 10.3969/j.issn.2095-1035.2020.02.010 Ma J Z, Li C, Zhang M J, et al. Direct determination of gold in geological samples by inductively coupled plasma mass spectrometry with aqua regia sampling preparation[J]. Chinese Jouranl of Inorganic Analytical Chemistry, 2020, 10(2): 48−51. doi: 10.3969/j.issn.2095-1035.2020.02.010 |
[14] | Yim S A, Choi M S, Chae J S. Direct determination of gold in rock samples using collision cell quadrupole ICP-MS[J]. Journal of the American Society for Mass Spectrometry, 2012, 23(1): 17−18. doi: 10.1007/s13361-011-0270-1 |
[15] | Tao D Y, Guo W, Xie W K, et al. Rapid and accurate determination of gold in geological materials by an improved ICP-MS method[J]. Microchemical Journal, 2017, 135: 221−225. doi: 10.1016/j.microc.2017.09.014 |
[16] | Tavakoli L, Yamini Y, Ebrahimzadeh H. Development of cloud point extraction for simultaneous extraction and determination of gold and palladium using ICP-OES[J]. Journal of Hazardous Materials, 2008, 152(2): 737−743. doi: 10.1016/j.jhazmat.2007.07.039 |
[17] | Rastegarzadeh S, Pourreza N, Larki A. Determination of trace silver in water, wastewater and ore samples using dispersive liquid–liquid microextraction coupled with flame atomic absorption spectrometry[J]. Journal of Industrial and Engineering Chemistry, 2015, 24: 297−301. doi: 10.1016/j.jiec.2014.09.045 |
[18] | Rodrigo M P, Paulina V B, Marcela M B, et al. Validation of the ASTM E1898-21 method with estimation of analytical uncertainty for the determination of silver by FAAS[J]. MAPAN, 2023, 38(4): 1005−1018. doi: 10.1007/s12647-023-00678-2 |
[19] | 陈祝海. 电感耦合等离子体原子发射光谱法测定金矿石中铅锌砷铋镉汞[J]. 黄金, 2020, 41(4): 79−82. doi: 10.11792/hj20200418 Chen Z H. Determination of Pb, Zn, As, Bi, Cd and Hg in gold ores by inductively coupled plasma-atomic emission spectroscopy[J]. Gold, 2020, 41(4): 79−82. doi: 10.11792/hj20200418 |
[20] | 徐进力, 邢夏, 张勤, 等. 电感耦合等离子体发射光谱法直接测定铜矿石中银铜铅[J]. 岩矿测试, 2010, 29(4): 377−382. doi: 10.15898/j.cnki.11-2131/td.2010.04.006 Xu J L, Xing X, Zhang Q, et al. Direct determination of silver copper lead and zinc in copper ores by inductively coupled plasma atomic emission spectrometry[J]. Rock and Mineral Analysis, 2010, 29(4): 377−382. doi: 10.15898/j.cnki.11-2131/td.2010.04.006 |
[21] | Rito B, Almeida D, Coimbra C. Post-measurement compressed calibration for ICP-MS-based metal quantification in mine residues bioleaching[J]. Scientific Reports, 2022, 12(1): 16007−16007. doi: 10.1038/s41598-022-19620-8 |
[22] | Xiong C X, Liu Y R, Gu J P. Rapid determination of As, Sb, Bi and Hg in gold ore samples by AFS with L-cysteine as a prereducer[J]. Advanced Materials Research, 2011, 1362(304): 328−333. doi: 10.4028/www.scientific.net/AMR.304.328 |
[23] | Mattiazzi P, Bohrer D, Viana C, et al. Determination of antimony in pharmaceutical formulations and beverages using high-resolution continuum-source graphite furnace atomic absorption spectrometry[J]. Journal of AOAC International, 2017, 100(3): 737−742. doi: 10.5740/jaoacint.16-0389 |
[24] | Unutkan T, Koyuncu I, Diker C, et al. Accurate and sensitive analytical strategy for the determination of antimony: Hydrogen assisted T-shaped slotted quartz tube-atom trap-flame atomic absorption spectrometry[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(1): 122−127. doi: 10.1007/s00128-018-2504-4 |
[25] | 范凡, 温宏利, 屈文俊, 等. 王水溶样-等离子体质谱法同时测定地质样品中砷锑铋银镉铟[J]. 岩矿测试, 2009, 28(4): 333−336. doi: 10.3969/j.issn.0254-5357.2009.04.006 Fan F, Wen H L, Qu W J, et al. Determination of arsenic, antimony, bismuth, silver, cadmium and indium in geological samples by inductively coupled plasma-mass spectrometry with aqua regia sample digestion[J]. Rock and Mineral Analysis, 2009, 28(4): 333−336. doi: 10.3969/j.issn.0254-5357.2009.04.006 |
[26] | Maja W, Anna S M, Pawel P. Improvement in the single and simultaneous generation of As, Bi, Sb and Se hydrides using a vapor generation accessory (VGA) coupled to axially viewed inductively coupled plasma optical emission spectrometry (ICP-OES)[J]. Analytical Methods, 2017, 9(5): 871−880. doi: 10.1039/c6ay02932a |
[27] | 郑智慷, 曾江萍, 王家松, 等. 常压密闭微波消解-电感耦合等离子体发射光谱法测定锑矿石中的锑[J]. 岩矿测试, 2020, 39(2): 208−215. doi: 10.15898/j.cnki.11-2131/td.201906110084 Zheng Z K, Zeng J P, Wang J S, et al. Determination of antimony in antimony ores by inductively coupled plasma-optical emission spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(2): 208−215. doi: 10.15898/j.cnki.11-2131/td.201906110084 |
[28] | 罗永红, 韦真周, 张相钰, 等. 湿法氧化除硫碳-活性炭富集-原子吸收分光光度法测定矿石中的金[J]. 湿法冶金, 2016, 35(2): 167−170. doi: 10.13355/j.cnki.sfyj.2016.02.021 Luo Y H, Wei Z Z, Zhang X Y, et al. Determination of gold in ore by oxidation removal sulphur and carbon-activated carbon enrichment-atomic absorption spectrophotometry[J]. Hydrometallurgy of China, 2016, 35(2): 167−170. doi: 10.13355/j.cnki.sfyj.2016.02.021 |
[29] | 葛艳梅. 王水溶样-火焰原子吸收光谱法直接测定高品位金矿石的金量[J]. 岩矿测试, 2014, 33(4): 491−496. doi: 10.15898/j.cnki.11-2131/td.2014.04.005 Ge Y M. Direct determination of high grade gold in ore by flame atomic absorption spectrometry with aqua regia sampling preparation[J]. Rock and Mineral Analysis, 2014, 33(4): 491−496. doi: 10.15898/j.cnki.11-2131/td.2014.04.005 |
[30] | Rodriguez N, Yoho M, Landsberger S. Determination of Ag, Au, Cu and Zn in ore samples from two Mexican mines by various thermal and epithermal NAA techniques[J]. Journal of Radio analytical and Nuclear Chemistry, 2016, 37(2): 955−961. doi: 10.1007/s10967-015-4277-0 |
[31] | 张洁, 阳国运. 电感耦合等离子体质谱法测定金矿石中金[J]. 冶金分析, 2018, 38(11): 18−23. doi: 10.13228/j.boyuan.issn1000-7571.010426 Zhang J, Yang G Y. Determination of gold in gold ore by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(11): 18−23. doi: 10.13228/j.boyuan.issn1000-7571.010426 |
[32] | 杨艳明. 电感耦合等离子体质谱法测定水系沉积物中银铜砷锑铋镉[J]. 冶金分析, 2019, 39(7): 58−64. doi: 10.13228/j.boyuan.issn1000-7571.010632 Yang Y M. Determination of silver, copper, arsenic, antimony, bismuth and cadmium in stream sediment by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2019, 39(7): 58−64. doi: 10.13228/j.boyuan.issn1000-7571.010632 |
The influence of ammonium bifluoride dosage on determination of Au and Ag
The influence of sample dissolution time on determination of Au, Ag, Sb, Cu, Pb, Zn and As