Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 2
Article Contents

ZHANG Pengfei, WANG Chengjun, QIU Yibo, NI Rui, ZHAO Huizhen, CHEN Yong. Quantitative Calculation Model for the Secondary Porosity of Sandstone Based on Mineral Dissolution Experiment and Its Application[J]. Rock and Mineral Analysis, 2025, 44(2): 279-289. doi: 10.15898/j.ykcs.202404200091
Citation: ZHANG Pengfei, WANG Chengjun, QIU Yibo, NI Rui, ZHAO Huizhen, CHEN Yong. Quantitative Calculation Model for the Secondary Porosity of Sandstone Based on Mineral Dissolution Experiment and Its Application[J]. Rock and Mineral Analysis, 2025, 44(2): 279-289. doi: 10.15898/j.ykcs.202404200091

Quantitative Calculation Model for the Secondary Porosity of Sandstone Based on Mineral Dissolution Experiment and Its Application

  • The formation mechanism and quantitative evaluation of secondary pore is the key problem for deep reservoirs. The experiments on dissolution-precipitation behavior of formation water and minerals in reservoirs were carried out by using a high temperature and pressure geochemical experimental simulation system based on the present temperature and pressure conditions of Minfeng sub-sag in the Dongying depression and the corresponding formation water characteristics. The experimental results show that under the current formation water and temperature pressure conditions, quartz and plagioclase could undergo dissolution, and the solubility increased with the increase of temperature, while calcite underwent cementation, and its growth rate changed little with the increase of temperature, generally concentrated at around 70×10−3g/L. Based on the experimental simulation results and taking into account factors such as the permeability flow rate, precipitation velocity, burial time, and porosity of the formation, a mathematical model of secondary porosity in sandstone reservoirs due to dissolution was established. According to the mathematical model calculation, the CaCl2 water type at 171℃ in Feng 8 well had the maximum contribution value of 2.5235% to the physical properties of the reservoir, which was the most favorable water type and temperature for the development of a secondary porosity zone within the simulation depth range of this well. The model calculation shows that the seepage rate was the main factor affecting the development of secondary dissolution pores. Combined with the diagenetic phenomenon of actual reservoirs in Feng 8 well, it had good correlation and obvious dissolution of quartz and feldspar, development of carbonate minerals in the form of cementation and metasomatism, which was consistent with the experimental simulation results. Based on mineral solubility, mineral content, reservoir temperature and pressure conditions and formation water chemistry, the quantitative calculation model established here can be used to predict the deep secondary pore development zone.

  • 加载中
  • [1] 陈勇, 王成军, 孙祥飞, 等. 碎屑岩储层矿物溶解度与溶蚀次生孔隙形成机理研究进展[J]. 矿物岩石地球化学通报, 2015, 34(4): 830−836.

    Google Scholar

    Chen Y, Wang C J, Sun X F, et al. Progress on mineral solubility and mechanism of dissolution secondary porosity forming in clastic reservoir[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(4): 830−836.

    Google Scholar

    [2] Surdam R C, Crossey L J. Organic-inorganic reactions during progressive burial: Key to porosity and permeability enhancement and preservation[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1985, 315(1531): 135−156. doi: 10.1098/rsta.1985.0034

    CrossRef Google Scholar

    [3] 黄思静, 杨俊杰, 张文正, 等. 不同温度条件下乙酸对长石溶蚀过程的实验研究[J]. 沉积学报, 1995, 13(1): 7−17.

    Google Scholar

    Huang S J, Yang J J, Zhang W Z, et al. Experimental study of feldspar dissolution by acetic acid at different burial temperatures[J]. Acta Sedimentologica Sinica, 1995, 13(1): 7−17.

    Google Scholar

    [4] Blake R E, Walter L M. Effects of organic acids on the dissolution of orthoclase at 80℃ and pH 6[J]. Chemical Geology, 1996, 132(1−4): 91−102. doi: 10.1016/S0009-2541(96)00044-7

    CrossRef Google Scholar

    [5] Welch S A, Ullman W J. Feldspar dissolution in acidic and organic solutions: Compositional and pH dependence of dissolution rate[J]. Geochimica et Cosmochimica Acta, 1996, 60(16): 2939−2948. doi: 10.1016/0016-7037(96)00134-2

    CrossRef Google Scholar

    [6] Huang W L, Longo J M. The effect of organics on feldspar dissolution and the development of secondary porosity[J]. Chemical Geology, 1992, 98(3−4): 271−292. doi: 10.1016/0009-2541(92)90189-C

    CrossRef Google Scholar

    [7] 罗孝俊, 杨卫东. 有机酸对长石溶解度影响的热力学研究[J]. 矿物学报, 2001, 21(2): 183−188. doi: 10.16461/j.cnki.1000-4734.2001.02.014

    CrossRef Google Scholar

    Luo X J, Yang W D. The effect of organic acid on feldspar solubility: A thermodynamic study[J]. Acta Mineralogica Sinica, 2001, 21(2): 183−188. doi: 10.16461/j.cnki.1000-4734.2001.02.014

    CrossRef Google Scholar

    [8] 陈传平, 固旭, 周苏闽, 等. 不同有机酸对矿物溶解的动力学实验研究[J]. 地质学报, 2008, 82(7): 1007−1012. doi: 10.3321/j.issn:0001-5717.2008.07.019

    CrossRef Google Scholar

    Chen C P, Gu X, Zhou S M, et al. Experimental research on dissolution dynamics of main minerals in several aqueous organic acid solutions[J]. Acta Geologica Sinica, 2008, 82(7): 1007−1012. doi: 10.3321/j.issn:0001-5717.2008.07.019

    CrossRef Google Scholar

    [9] 曹正林, 袁剑英, 黄成刚, 等. 高温高压碎屑岩储层中石膏溶解对方解石沉淀的影响[J]. 石油学报, 2014, 35(3): 450−454. doi: 10.7623/syxb201403005

    CrossRef Google Scholar

    Cao Z L, Yuan J Y, Huang C G, et al. Influence of plaster dissolution on calcite precipitation in clastic reservoirs under high-temperature and high-pressure conditions[J]. Acta Petrolei Sinica, 2014, 35(3): 450−454. doi: 10.7623/syxb201403005

    CrossRef Google Scholar

    [10] Shmulovich K, Graham C, Yardley B. Quartz, albite and diopside solubilities in H2O-NaCl and H2O-CO2 fluids at 0.5−0.9GPa[J]. Contributions to Mineralogy and Petrology, 2001, 141(1): 95−108. doi: 10.1007/s004100000224

    CrossRef Google Scholar

    [11] 曲希玉, 刘立, 马瑞, 等. CO2流体对岩屑长石砂岩改造作用的实验[J]. 吉林大学学报(地球科学版), 2008, 38(6): 959−964. doi: 10.13278/j.cnki.jjuese.2008.06.002

    CrossRef Google Scholar

    Qu X Y, Liu L, Ma R, et al. Experiment on debris-arkosic sandstone reformation by CO2 fluid[J]. Journal of Jilin University (Earth Science Edition), 2008, 38(6): 959−964. doi: 10.13278/j.cnki.jjuese.2008.06.002

    CrossRef Google Scholar

    [12] 任拥军, 陈勇. 东营凹陷民丰洼陷深部天然气储层酸性溶蚀作用的流体包裹体证据[J]. 地质学报, 2010, 84(2): 257−262. doi: 10.19762/j.cnki.dizhixuebao.2010.02.011

    CrossRef Google Scholar

    Ren Y J, Chen Y. Acid dissolution of deep natural gas reservoirs in the Minfeng Sag in the Dongying Depression: Evidence from fluid inclusions[J]. Acta Geologica Sinica, 2010, 84(2): 257−262. doi: 10.19762/j.cnki.dizhixuebao.2010.02.011

    CrossRef Google Scholar

    [13] Shiraki R, Rock P A, Casey W H. Dissolution kinetics of calcite in 0.1M NaCl solution at room temperature: An atomic force microscopic (AFM) study[J]. Aquatic Geochemistry, 2000, 6: 87−108. doi: 10.1023/A:1009656318574

    CrossRef Google Scholar

    [14] Newton R C, Manning C E. Experimental determination of calcite solubility in H2O-NaCl solutions at deep crust/upper mantle pressures and temperatures: Implications for metasomatic processes in shear zones[J]. American Mineralogist, 2002, 87(10): 1401−1409. doi: 10.2138/am-2002-1016

    CrossRef Google Scholar

    [15] Shmulovich K I, Yardley B W D, Graham C M. Solubility of quartz in crustal fluids: Experiments and general equations for salt solutions and H2O-CO2 mixtures at 400−800℃ and 0.1−0.9GPa[J]. Geofluids, 2006, 6(2): 154−167. doi: 10.1111/j.1468-8123.2006.00140.x

    CrossRef Google Scholar

    [16] Li M, Li C, Xing J, et al. An experimental study on dynamic coupling process of alkaline feldspar dissolution and secondary mineral precipitation[J]. Acta Geochim, 2019, 38: 872−882. doi: 10.1007/s11631-019-00326-0

    CrossRef Google Scholar

    [17] Meng W, Sui F, Hao X, et al. Thermodynamic characteristics and mineral dissolution model of the H2O-CO2-CaCO3-albite-SiO2 system in sedimentary basins[J]. Fuel, 2022, 308: 121992. doi: 10.1016/j.fuel.2021.121992

    CrossRef Google Scholar

    [18] Yuan G H, Cao Y C, Gluyas J, et al. How important is carbonate dissolution in buried sandstones: Evidences from petrography, porosity, experiments, and geochemical calculations[J]. Petroleum Science, 2019, 16: 729−751. doi: 10.1007/s12182-019-0344-4

    CrossRef Google Scholar

    [19] Cao Y, Yuan G, Wang Y, et al. Successive formation of secondary pores via feldspar dissolution in deeply buried feldspar-rich clastic reservoirs in typical petroliferous basins and its petroleum geological significance[J]. Science China Earth Sciences, 2022, 65(9): 1673−1703. doi: 10.1007/s11430-020-9931-9

    CrossRef Google Scholar

    [20] 郭欣欣, 刘立, 曲希玉, 等. 碱性地层水对火山碎屑岩改造作用的实验研究[J]. 石油实验地质, 2013, 35(3): 314−319. doi: 10.11781/sysydz201303314

    CrossRef Google Scholar

    Guo X X, Liu L, Qu X Y, et al. Experimental study on reformation of volcanic clastic rocks by alkaline formation water[J]. Petroleum Geology & Experiment, 2013, 35(3): 314−319. doi: 10.11781/sysydz201303314

    CrossRef Google Scholar

    [21] 徐梅桂, 张哨楠, 伏美燕, 等. 不同淡水成岩体系下长石溶蚀的对比实验[J]. 现代地质, 2013, 27(4): 925−933. doi: 10.3969/j.issn.1000-8527.2013.04.019

    CrossRef Google Scholar

    Xu M G, Zhang S N, Fu M Y, et al. Contrast experiments about dissolution of feldspar in different freshwater diagenetic systems[J]. Geoscience, 2013, 27(4): 925−933. doi: 10.3969/j.issn.1000-8527.2013.04.019

    CrossRef Google Scholar

    [22] Blatt H, Middleton G, Murray R. Origin of sedimentary rocks (The second edition)[M]. New Jersey: Prentice Hall Inc, 1980: 332−362.

    Google Scholar

    [23] 孙致安, 卢寿慈. 钙、镁离子对石英、赤铁矿凝聚与絮凝的作用[J]. 矿冶工程, 1992, 12(2): 19−22.

    Google Scholar

    Sun Z A, Lu S C. Effect of calcium and magnesium ions on aggregation and flocculation of quartz and hematite[J]. Mining and Metallurgical Engineering, 1992, 12(2): 19−22.

    Google Scholar

    [24] Strandh H, Pettersson L G M, Sjöberg L, et al. Quantum chemical studies of the effects on silicate mineral dissolution rates by adsorption of alkali metals[J]. Geochimica et Cosmochimica Acta, 1997, 61(13): 2577−2587. doi: 10.1016/S0016-7037(97)00118-X

    CrossRef Google Scholar

    [25] Dove P M. The dissolution kinetics of quartz in aqueous mixed cation solutions[J]. Geochimica et Cosmochimica Acta, 1999, 63(22): 3715−3727. doi: 10.1016/S0016-7037(99)00218-5

    CrossRef Google Scholar

    [26] 张思亭, 刘耘. 不同pH值条件下石英溶解的分子机理[J]. 地球化学, 2009, 38(6): 549−557. doi: 10.19700/j.0379-1726.2009.06.004

    CrossRef Google Scholar

    Zhang S T, Liu Y. Molecular level dissolution mechanisms of quartz under different pH conditions[J]. Geochimica, 2009, 38(6): 549−557. doi: 10.19700/j.0379-1726.2009.06.004

    CrossRef Google Scholar

    [27] Arnorsson S, Stefansson A. Assessment of feldspar solubility constants in water in the range of 0 degrees to 350 degrees at vapor saturation pressures[J]. American Journal of Science, 1999, 299(3): 173−209. doi: 10.2475/ajs.299.3.173

    CrossRef Google Scholar

    [28] Pokrovski G S, Schott J, Salvi S, et al. Structure and stability of aluminum-silica complexes in neutral to basic solutions experimental study and molecular orbital calculations[J]. Mineralogical Magazine, 1998, 62: 1194−1195. doi: 10.1180/minmag.1998.62A.2.290

    CrossRef Google Scholar

    [29] Davis K J, Dove P M, de Yoreo J J. The role of Mg2+ as an impurity in calcite growth[J]. Science, 2000, 290(5494): 1134−1137. doi: 10.1126/science.290.5494.1134

    CrossRef Google Scholar

    [30] 袁静, 张善文, 乔俊, 等. 东营凹陷深层溶蚀孔隙的多重介质成因机理和动力机制[J]. 沉积学报, 2007, 25(6): 840−846. doi: 10.3969/j.issn.1000-0550.2007.06.004

    CrossRef Google Scholar

    Yuan J, Zhang S W, Qiao J, et al. The genesis and dynamic mechanisms of multi-medium dissolution pores in the deep layers of the Dongying Depression[J]. Acta Sedimentologica Sinica, 2007, 25(6): 840−846. doi: 10.3969/j.issn.1000-0550.2007.06.004

    CrossRef Google Scholar

    [31] 周瑶琪, 周振柱, 陈勇, 等. 东营凹陷民丰地区深部储层成岩环境变化研究[J]. 地学前缘, 2011, 18(2): 268−276.

    Google Scholar

    Zhou Y Q, Zhou Z Z, Chen Y, et al. Research on diagenetic environmental changes of deep reservoir in Minfeng area, Dongying Depression[J]. Earth Science Frontiers, 2011, 18(2): 268−276.

    Google Scholar

    [32] Wang Y Z, Cao Y C, Zhang S M, et al. Genetic mechanisms of secondary pore development zones of Es4 x in the north zone of the Minfeng Sag in the Dongying Depression, East China[J]. Petroleum Science, 2016, 13: 1−17. doi: 10.1007/s12182-016-0076-7

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(4)

Article Metrics

Article views(204) PDF downloads(39) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint