Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 5
Article Contents

XIAO Fang, ZHANG Tianyuan, ZHANG Liping, LIU Lu, MAO Xiangju, NI Wenshan. Ultratrace Gold in High-Purity Graphite by High-Resolution Continuous Light Source Graphite Furnace Atomic Absorption Spectrometry with Hanging Droplet Microextraction[J]. Rock and Mineral Analysis, 2024, 43(5): 734-743. doi: 10.15898/j.ykcs.202406210137
Citation: XIAO Fang, ZHANG Tianyuan, ZHANG Liping, LIU Lu, MAO Xiangju, NI Wenshan. Ultratrace Gold in High-Purity Graphite by High-Resolution Continuous Light Source Graphite Furnace Atomic Absorption Spectrometry with Hanging Droplet Microextraction[J]. Rock and Mineral Analysis, 2024, 43(5): 734-743. doi: 10.15898/j.ykcs.202406210137

Ultratrace Gold in High-Purity Graphite by High-Resolution Continuous Light Source Graphite Furnace Atomic Absorption Spectrometry with Hanging Droplet Microextraction

More Information
  • The major challenge in accurately determining ultratrace gold in high-purity graphite is how to achieve effective separation and high enrichment of it (0.1−1ng/mL) in the sample solution, while minimizing the secondary pollution introduced by vessels, reagents, materials, environment, and equipment during the sample pretreatment process. A new method for the analysis of ultratrace gold in high-purity graphite is established by ashing and acid dissolution in a platinum dish, followed by microextraction with a hanging droplet of tributyl phosphate. Firstly, the fixed carbon in the sample was removed by high-temperature burning in a platinum vessel; then, the ash was completely dissolved into a sample solution using hydrofluoric acid-aqua regia-perchloric acid; next, micro-upgraded tributyl phosphate droplets were used as an extractant to separate and enrich gold from the sample solution; finally, gold in the droplets was determined using high-resolution continuum source graphite furnace atomic absorption spectrometry. The experimental results showed that by using 2.5μL of tributyl phosphate (chloroform volume fraction 20%) as the extractant, gold can be extracted from a sample solution in 10% hydrochloric acid medium for 2min, and the enrichment factor for gold can reach up to 283 times. Under the selected experimental conditions, the mass concentration of gold showed a good linear relationship with its absorbance values in the range of 0.1 to 2.0ng/mL. The correlation coefficient (r) was 0.999, and the detection limit of the method was 0.11ng/g. Interference tests showed that the presence of certain coexisting elements such as sodium, magnesium, and aluminum in the sample solution had no effect on the determination of gold. According to the experimental method, the gold content in five high-purity graphite samples was measured. The relative standard deviation (RSD, n=6) of the results was 1.5%−4.9%, and the recovery rate was 94.9%−105.3%.

  • 加载中
  • [1] 申玉民, 罗治定, 郭小彪, 等. 泡塑分离富集-火焰原子荧光光谱法测定地球化学样品中的痕量金[J]. 岩矿测试, 2020, 39(1): 127−134. doi: 10.15898/j.cnki.11-2131/td.201809260108

    CrossRef Google Scholar

    Shen Y M, Luo Z D, Guo X B, et al. Determination of trace gold in geochemical samples by flame atomic fluorescence spectrometry with PUFP separation and enrichment[J]. Rock and Mineral Analysis, 2020, 39(1): 127−134. doi: 10.15898/j.cnki.11-2131/td.201809260108

    CrossRef Google Scholar

    [2] 马怡飞, 汪广恒, 张尼, 等. 乙醇介质制备载炭泡塑及其在地质样品金测定中的应用[J]. 岩矿测试, 2018, 37(5): 533−540. doi: 10.15898/j.cnki.11-2131/td.201801150005

    CrossRef Google Scholar

    Ma Y F, Wang G H, Zhang N, et al. Determination of gold in geological samples[J]. Rock and Mineral Analysis, 2018, 37(5): 533−540. doi: 10.15898/j.cnki.11-2131/td.201801150005

    CrossRef Google Scholar

    [3] Liu Y H, Wang Z C, Xue D S, et al. An improved analytical protocol for the determination of sub-nanogramgold in 1-2g rock samples using GFAAS after polyurethane foam pretreatment[J]. Atomic Spectro-scopy, 2020, 41(3): 131−140. doi: 10.46770/AS.2020.03.006

    CrossRef Google Scholar

    [4] 王明双, 荀维超. 717阴离子交换树脂吸附高盐废水中金的性能研究[J]. 贵金属, 2022, 43(2): 47−50. doi: 10.3969/j.issn.1004-0676.2022.02.008

    CrossRef Google Scholar

    Wang M S, Xun W C. Study on the adsorption performance of 717 anion resin for gold in high-salt waste water[J]. Preciousmetals, 2022, 43(2): 47−50. doi: 10.3969/j.issn.1004-0676.2022.02.008

    CrossRef Google Scholar

    [5] Fischer L, Moser B, Hann S. Determination of background concentrations of Ag, Pd, Pt and Au in highly mineralized ground waters at sub-ng·L−1 concentrations by online matrix separation/pre-concentration coupled to ICP-SFMS[J]. Molecules, 2021, 26(23): 1−21.

    Google Scholar

    [6] 齐白羽, 王丁, 王卓, 等. 低温乙醇分离-电感耦合等离子体原子发射光谱法测定粗铅中金[J]. 理化检验(化学分册), 2021, 57(11): 977−979. doi: 10.11973/lhjy-hx202111003

    CrossRef Google Scholar

    Qi B Y, Wang D, Wang Z, et al. Determination of gold in crude lead by ICP-AES after separation with low temperature ethano[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2021, 57(11): 977−979. doi: 10.11973/lhjy-hx202111003

    CrossRef Google Scholar

    [7] Liu Y H, Wan B , Xue D S. Sample digestion and combined preconcentration methods for the determination of ultra-low gold levels in rocks[J]. Molecules, 2019, 24(9): 1778: 1−20.

    Google Scholar

    [8] 吴俊, 傅昊, 李冰健, 等. 疏水性离子液体萃取-原子吸收光谱法分离分析微量金[J]. 光谱学与光谱分析, 2011, 31(1): 260−262. doi: 10.3964/j.issn.1000-0593(2011)01-0260-03

    CrossRef Google Scholar

    Wu J, Fu H, Li B J, et al. Hydrophobic ionic liquid extraction-flam atomic absorption spectrometry for separation/analysis trace gold[J]. Spectroscopy and Spectral Analysis, 2011, 31(1): 260−262. doi: 10.3964/j.issn.1000-0593(2011)01-0260-03

    CrossRef Google Scholar

    [9] 巫贞祥, 赖秋祥, 衷水平, 等. 火试金预富集-原子吸收光谱法测定文丘里泥中的金[J]. 黄金, 2021, 42(1): 88−90. doi: 10.11792/hj20210119

    CrossRef Google Scholar

    Wu Z X, Lai Q X, Zhong S P, et al. Determination of gold in Venturi mud by fire assay preconcentration-atomic absorption spectrometry[J]. Gold, 2021, 42(1): 88−90. doi: 10.11792/hj20210119

    CrossRef Google Scholar

    [10] 姚明星, 毛香菊, 郭晓瑞, 等. 银保护灰吹铅试金-高分辨率连续光源火焰原子吸收光谱法测定铁粉中痕量金[J]. 冶金分析, 2022, 42(8): 48−54. doi: 10.13228/j.boyuan.issn1000-7571.011813

    CrossRef Google Scholar

    Yao M X, Mao X J, Guo X R, et al. Determination of trace gold in iron powder by high resolution continuous light source flame atomic absorption spectrometry with silver protection cupellation lead fire assay enrich-ment[J]. Metallurgical Analysis, 2022, 42(8): 48−54. doi: 10.13228/j.boyuan.issn1000-7571.011813

    CrossRef Google Scholar

    [11] 姚明星, 王威, 毛香菊, 等. 铋试金-石墨炉原子吸收光谱法测定地球化学样品中痕量金铂钯钌铑铱[J]. 冶金分析, 2022, 42(9): 42−47. doi: 10.13228/j.boyuan.issn1000-7571.011827

    CrossRef Google Scholar

    Yao M X, Wang W, Mao X J, et al. Determination of trace gold, platinum, palladium, ruthenium, rhodium and iridium in geochemical samples by graphite furnace atomic absorption spectrometry with bismuth fire assay[J]. Metallurgical Analysis, 2022, 42(9): 42−47. doi: 10.13228/j.boyuan.issn1000-7571.011827

    CrossRef Google Scholar

    [12] 刘娜, 刘芳美, 赖秋祥, 等. 火试金重量法测定碲化铜中的金和银[J]. 中国有色冶金, 2022, 51(6): 65−70. doi: 10.19612/j.cnki.cn11-5066/tf.2022.06.010

    CrossRef Google Scholar

    Liu N, Liu F M, Lai Q X, et al. Determination of gold and silver in copper telluride by fire assay gravimetric method[J]. China Nonferrous Metallurgy, 2022, 51(6): 65−70. doi: 10.19612/j.cnki.cn11-5066/tf.2022.06.010

    CrossRef Google Scholar

    [13] 崔行宪, 石奇超. 火试金重量法与原子吸收光谱(AAS)法测定砂金矿中金的含量[J]. 中国无机分析化学, 2021, 4(11): 45−49. doi: 10.3969/j.issn.2095-1035.2021.04.009

    CrossRef Google Scholar

    Cui X X, Shi Q C. Determination of gold in placer golder by fire assay gravimetry method combined with AAS wet method and atomic absorption spectrometry (AAS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 4(11): 45−49. doi: 10.3969/j.issn.2095-1035.2021.04.009

    CrossRef Google Scholar

    [14] 邵敏, 宋虎跃, 沈芳存, 等. 液滴微萃取-石墨炉原子吸收光谱法测定环境水样中痕量镉[J]. 冶金分析, 2011, 31(2): 52−55. doi: 10.3969/j.issn.1000-7571.2011.02.009

    CrossRef Google Scholar

    Shao M, Song H Y, Shen F C, et al. Determination of trace cadmium in environmental watersamples by graphite furnace atomic absorption spectrometry combined with droplet microextraction[J]. Metallurgical Analysis, 2011, 31(2): 52−55. doi: 10.3969/j.issn.1000-7571.2011.02.009

    CrossRef Google Scholar

    [15] Jiang H M, Hu B. Determination of trace Cd and Pb in natural waters by direct single drop microextraction combined with electrothermal atomic absorption spectrometry[J]. Microchim Acta, 2008, 161: 101−107.

    Google Scholar

    [16] Zhao L C, Li W, Hu Y Q, et, al. Optimization of lithium metaboratefusion and post-ultrasonic extraction for multi-element determination in graphite by ICP-AES[J]. Analytics Sciences December, 2021, 37: 1735−1740.

    Google Scholar

    [17] 杨倩倩, 何石, 胡月, 等. 电感耦合等离子体原子发射光谱法测定高纯石墨中9种元素[J]. 冶金分析, 2016, 36(3): 49−53. doi: 10.13228/j.boyuan.issn1000-7571.009712

    CrossRef Google Scholar

    Yang Q Q, He S, Hu Y, et al. Determination of nine elements in high purity graphite by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2016, 36(3): 49−53. doi: 10.13228/j.boyuan.issn1000-7571.009712

    CrossRef Google Scholar

    [18] 王琳, 唐志中, 来新泽, 等. 混合吸附剂分离富集-电感耦合等离子体质谱法测定地质样品中铂钯金[J]. 岩矿测试, 2013, 32(3): 420−426. doi: 10.3969/j.issn.0254-5357.2013.03.011

    CrossRef Google Scholar

    Wang L, Tang Z Z, Lai X Z, et al. Determination of platinum, palladium and gold in geological samples by bomb-inductively coupled plasma-mass spectrometry with concentrate and extraction by mixed adsorbent[J]. Rock and Mineral Analysis, 2013, 32(3): 420−426. doi: 10.3969/j.issn.0254-5357.2013.03.011

    CrossRef Google Scholar

    [19] 于立华. 电感耦合等离子体质谱法(ICP-MS)测定地球化学样品中金时样品前处理条件的优化[J]. 中国无机分析化学, 2019, 9(2): 46−49. doi: 10.3969/j.issn.2095-1035.2019.02.010

    CrossRef Google Scholar

    Yu L H. Optimization of pretreatment conditions for determination of gold in geochemical samples by ICP-MS[J]. Chinese Journal Inorganic Analytical Chemistry, 2019, 9(2): 46−49. doi: 10.3969/j.issn.2095-1035.2019.02.010

    CrossRef Google Scholar

    [20] Yu H, Jia Y L, Hong M, et al. Hybrid monolith assisted magnetic ion-imprinted polymer extraction coupled with ICP-MS for determination of trace Au(Ⅲ) in environmental and mineral samples[J]. Microchemical Journal, 2020, 158(1): 1−8.

    Google Scholar

    [21] Xia L, Li X, Wu Y, et al. Ionic liquids based single drop microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for determination of Co, Hg and Pb in biological and environmental samples[J]. Spectrochim Acta Part B, 2008, 63: 1290−1296. doi: 10.1016/j.sab.2008.09.018

    CrossRef Google Scholar

    [22] 张爱滨, 魏进武, 王燕, 等. 顺序扫描ICP-AES法测定高纯石墨灰分中14种杂质金属元素的方法研究[J]. 青岛海洋大学学报, 2003, 33(4): 609−614. doi: 10.16441/j.cnki.hdxb.2003.04.019

    CrossRef Google Scholar

    Zhang A B, Wei J W, Wang Y, et al. Determination of impurity elements in high purity graphite ash by equential scan inductively coupled plasma atomic emission spectrometry[J]. Journal of Ocean University of Qingdao, 2003, 33(4): 609−614. doi: 10.16441/j.cnki.hdxb.2003.04.019

    CrossRef Google Scholar

    [23] Oshima T, Koyama T, Otsuki A N. A comparative study on the extraction of Au(III) using cyclopentylmethyl ether, dibutylcarbitol, and methyl isobutyl ketone in acidic chloride media[J]. Solvent Extraction and Ion Exchange, 2021, 39: 477−490. doi: 10.1080/07366299.2021.1874108

    CrossRef Google Scholar

    [24] 王小强, 赵亚男, 梁倩, 等. 泡沫塑料富集-火焰原子吸收光谱法测定金矿石中金[J]. 中国无机分析化学, 2022, 12(3): 110−114. doi: 10.3969/j.issn.2095-1035.2022.03.016

    CrossRef Google Scholar

    Wang X Q, Zhao Y N, Liang Q. Determination of gold in gold ores by flame atomic absorption spectrometry with foam plastics enrichment[J]. China Inorganic Analytical Chemistry, 2022, 12(3): 110−114. doi: 10.3969/j.issn.2095-1035.2022.03.016

    CrossRef Google Scholar

    [25] 单兴刚, 林云芬. 乙酸丁酯萃取-火焰原子吸收光谱法测定矿石中痕量金[J]. 冶金分析, 2011, 31(3): 64−67. doi: 10.3969/j.issn.1000-7571.2011.03.013

    CrossRef Google Scholar

    Shan X G, Lin Y F. Determination of trace gold in ore by butyl acetate extraction and flame atomic absorption spectro-metry[J]. Metallurgical Analysis, 2011, 31(3): 64−67. doi: 10.3969/j.issn.1000-7571.2011.03.013

    CrossRef Google Scholar

    [26] Joanna D, Marzena D, Rafał O, et al. An ion-imprinted thiocyanato-functionalized mesoporous silica for preconcentration of gold(Ⅲ) prior to its quantitation by slurry sampling graphite furnace AAS[J]. Microchimica Acta, 2018, 185(12): 564. doi: 10.1007/s00604-018-3106-x

    CrossRef Google Scholar

    [27] 周陶鸿, 黄健, 田琼, 等. 阴离子交换固相萃取在测定铜矿和粗铜中金的应用[J]. 冶金分析, 2010, 30(8): 66−69. doi: 10.3969/j.issn.1000-7571.2010.08.014

    CrossRef Google Scholar

    Zhou T H, Huang J, Tian Q, et al. Application of anion exchange solid phase extraction in determination of gold in copper concentrate and blister copper[J]. Metallurgical Analysis, 2010, 30(8): 66−69. doi: 10.3969/j.issn.1000-7571.2010.08.014

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(4)

Article Metrics

Article views(205) PDF downloads(38) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint