Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 5
Article Contents

WEI Pengfei, GENG Ke, LIU Jianhui, ZHANG Yan, LI Dapeng, CAI Na, ZHANG Chao, LIU Qiang, XIE Wei. Oxygen Isotope In Situ Microanalysis of Zircon by SHRIMP Ⅴ[J]. Rock and Mineral Analysis, 2024, 43(5): 723-733. doi: 10.15898/j.ykcs.202403130041
Citation: WEI Pengfei, GENG Ke, LIU Jianhui, ZHANG Yan, LI Dapeng, CAI Na, ZHANG Chao, LIU Qiang, XIE Wei. Oxygen Isotope In Situ Microanalysis of Zircon by SHRIMP Ⅴ[J]. Rock and Mineral Analysis, 2024, 43(5): 723-733. doi: 10.15898/j.ykcs.202403130041

Oxygen Isotope In Situ Microanalysis of Zircon by SHRIMP Ⅴ

More Information
  • Oxygen isotope analysis can provide important genetic information for the formation and evolution of rocks, hydrothermal fluids, and mineral deposits. It is a powerful tool for petrology and mineral deposits research. Secondary ion mass spectrometry (SIMS) is widely used for oxygen isotopes analysis of accessory minerals such as zircon with its advantage of its unique in situ microanalysis. However, since the advent of SHRIMP, there has always been a problem of sample chamber vacuum damage caused by heating and deflation during the movement of the sample stage. In order to maintain a stable high level of vacuum in the sample chamber and ensure the accuracy of oxygen isotope testing, an in situ microanalytical method of oxygen isotopes in zircon was established by using the fifth generation of sensitive high resolution ion microprobe (SHRIMP Ⅴ) with an upgraded piezoceramics driven high vacuum sample stage. The instrument conditions include: the primary ion intensity of 3nA, electron gun energy of −1.9keV, beam spot size of 25μm, source slit width of 120μm, and slit widths of both 18O and 16O receivers of 300μm. The system was adjusted by using zircon standard samples Temora 2 and Qinghu, and the obtained signal intensity of 16O was 1.2×109cps. The standard samples R33, FC1 and Tanz were also tested. The results showed that the analysis values of δ18O for zircon standard samples were consistent with the reference values within the error range. Internal analysis accuracy was better than 0.30‰ (2SE), and the external accuracy was better than 0.50‰ (2SD). The overall testing accuracy of zircon oxygen isotope analysis by SHRIMP Ⅴ was comparable to that of existing SHRIMP series instruments in China and abroad, which verified the accuracy, precision and stability of SHRIMP Ⅴ. After upgrading the high vacuum platform, the sample chamber vacuum stability of the SHRIMP Ⅴ was maintained within 2.5×10−8torr (original SHRIMP is 4.0×10−8torr), which further improves the ultimate vacuum, repeat positioning ability and resolution. Besides, it is more conducive to the analysis of stable isotopes such as oxygen and provides the possibility for the future testing of water content in traditional anhydrous minerals.

  • 加载中
  • [1] Valley J W. Oxygen isotopes in zircon[J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 343−385. doi: 10.2113/0530343

    CrossRef Google Scholar

    [2] 李铁军. 氧同位素在岩石成因研究的新进展[J]. 岩矿测试, 2013, 32(6): 841−849. doi: 10.3969/j.issn.0254-5357.2013.06.002

    CrossRef Google Scholar

    Li T J. Progress in the application of oxygen isotopes in the study of petrogenesis[J]. Rock and Mineral Analysis, 2013, 32(6): 841−849. doi: 10.3969/j.issn.0254-5357.2013.06.002

    CrossRef Google Scholar

    [3] 张建锋, 刘汉彬, 石晓, 等. 五氟化溴法测定硅酸盐及氧化物矿物氧同位素组成的影响因素研究[J]. 岩矿测试, 2019, 38(1): 45−54. doi: 10.15898/j.cnki.11-2131/td.201805170062

    CrossRef Google Scholar

    Zhang J F, Liu H B, Shi X, et al. Study on influence factors for determination of oxygen isotopic composition of silicates and oxide minerals by BrF5 method[J]. Rock and Mineral Analysis, 2019, 38(1): 45−54. doi: 10.15898/j.cnki.11-2131/td.201805170062

    CrossRef Google Scholar

    [4] Wang X L, Tang M, Moyen J, et al. The onset of deep recycling of supracrustal materials at the Paleo-Mesoarchean boundary[J]. National Science Review, 2022, 3: 009. doi: 10.1093/nsr/nwab136

    CrossRef Google Scholar

    [5] 陈意, 胡兆初, 贾丽辉, 等. 微束分析测试技术十年(2011~2020)进展与展望[J]. 矿物岩石地球化学通报, 2021, 40(1): 1−35, 253. doi: 10.19658/j.issn.1007-2802.2020.39.097

    CrossRef Google Scholar

    Chen Y, Hu Z C, Jia L H, et al. Progress of microbeam analytical technologies in the past decada (2011—2020) and prospect[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(1): 1−35, 253. doi: 10.19658/j.issn.1007-2802.2020.39.097

    CrossRef Google Scholar

    [6] 李献华, 李武显, 王选策, 等. 幔源岩浆在南岭燕山早期花岗岩形成中的作用: 锆石原位 Hf-O同位素制约[J]. 中国科学: 地球科学, 2009, 39(7): 872−887. doi: 10.1007/11430-009-0117-9

    CrossRef Google Scholar

    Li X H, Li W X, Wang X C, et al. Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China: In situ zircon Hf-O isotopic constraints[J]. Science China Serie D-Earth Science, 2009, 39(7): 872−887. doi: 10.1007/11430-009-0117-9

    CrossRef Google Scholar

    [7] Whitehouse M J, Nemchin A A. High precision, high accuracy measurement of oxygen isotopes in a large Lunar zircon by SIMS[J]. Chemical Geology, 2009, 261(1-2): 32−42. doi: 10.1016/j.chemgeo.2008.09.009

    CrossRef Google Scholar

    [8] 董春艳, 万渝生, 龙涛, 等. 华北克拉通大青山—集宁地区古元古代变质沉积岩的锆石氧同位素组成: SHRIMP微区原位分析[J]. 岩石学报, 2016, 32(3): 659−681.

    Google Scholar

    Dong C Y, Wan Y S, Long T, et al. Oxygen isotopic compositions of zircons from Paleoproterozoic metasedimentary rocks in the Daqingshan—Jining area, North China Craton: In situ SHRIMP analysis[J]. Acta Petrologica Sinica, 2016, 32(3): 659−681.

    Google Scholar

    [9] Che X C, Nemchin A, Liu D Y, et al. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5[J]. Science, 2021, 374: 887−890. doi: 10.1126/science.abl7957

    CrossRef Google Scholar

    [10] Li Q L, Zhou Q, Liu Y, et al. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts[J]. Nature, 2021, 600: 54−58. doi: 10.1038/s41586-021-04100-2

    CrossRef Google Scholar

    [11] 周强, 李金英, 梁汉东, 等. 二次离子质谱(SIMS)分析技术及应用进展[J]. 质谱学报, 2004, 25(2): 113−120. doi: 10.3969/j.issn.1004-2997.2004.02.013

    CrossRef Google Scholar

    Zhou Q, Li J Y, Liang H D, et al. Recent developments on secondary ion mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2004, 25(2): 113−120. doi: 10.3969/j.issn.1004-2997.2004.02.013

    CrossRef Google Scholar

    [12] 宋彪, 张玉海, 刘敦一. 微量原位分析仪器SHRIMP的产生与锆石同位素地质年代学[J]. 质谱学报, 2002, 23(1): 58−62. doi: 10.3969/j.issn.1004-2997.2002.01.011

    CrossRef Google Scholar

    Song B, Zhang Y H, Liu D Y. Introduction to the naissance of SHRIMP and its contribution to isotope geology[J]. Journal of Chinese Mass Spectrometry Society, 2002, 23(1): 58−62. doi: 10.3969/j.issn.1004-2997.2002.01.011

    CrossRef Google Scholar

    [13] 吕畅, 王浩, 杨进辉, 等. 华北克拉通始太古代演化——来自冀东38亿年片麻岩锆石Hf-O同位素的记录[J]. 岩石学报, 2024, 40(3): 689−701. doi: 10.18654/1000-0569/2024.03.02

    CrossRef Google Scholar

    Lyu C, Wang H, Yang J H, et al. Eoarchean evolution of the North China Craton: Zircon Hf-O isotopic evidence of the ca. 3.8Ga gneiss from Eastern Hebei Province[J]. Acta Petrologica Sinica, 2024, 40(3): 689−701. doi: 10.18654/1000-0569/2024.03.02

    CrossRef Google Scholar

    [14] 李秋耘, 杨志明, 王瑞, 等. 西藏驱龙矿区中新世侵入岩锆石微量和Hf-O同位素研究[J]. 岩石矿物学杂志, 2021, 40(6): 1023−1048. doi: 10.3969/j.issn.1000-6524.2021.06.001

    CrossRef Google Scholar

    Li Q G, Yang Z M, Wang R, et al. Zircon trace elemental and Hf-O isotopic compositions of the Miocene magmatic suite in the giant Qulong porphyry copper deposit, Southern Tibet[J]. Acta Petrologica et Mineralogica, 2021, 40(6): 1023−1048. doi: 10.3969/j.issn.1000-6524.2021.06.001

    CrossRef Google Scholar

    [15] Aubert M, Williams I S, Boljkovac K, et al. In situ oxygen isotope micro-analysis of faunal material and human teeth using a SHRIMP Ⅱ: A new tool for palaeo-ecology and archaeology[J]. Journal of Archaeological Science, 2012, 39(10): 3184−3194. doi: 10.1016/j.jas.2012.05.002

    CrossRef Google Scholar

    [16] 刘浴辉, 唐国强, 凌潇潇, 等. 二次离子质谱技术在季节分辨石笋δ18O分析中的应用[J]. 中国科学: 地球科学, 2015, 45(9): 1316−1323. doi: 10.1007/s11430-015-5114-6

    CrossRef Google Scholar

    Liu Y H, Tang G Q, Ling X X, et al. Speleothem annual layers revealed by seasonal SIMS δ18O measure-ments[J]. Science China Earth Sciences, 2015, 45(9): 1316−1323. doi: 10.1007/s11430-015-5114-6

    CrossRef Google Scholar

    [17] 周丽芹, Williams I S, 刘建辉, 等. 牙形石SHRIMP微区原位氧同位素分析方法[J]. 地质学报, 2012, 86(4): 611−618. doi: 10.3969/j.issn.0001-5717.2012.04.007

    CrossRef Google Scholar

    Zhou L Q, Williams I S, Liu J H, et al. Methodology of SHRIMP in-situ O isotopes analysis on conodont[J]. Acta Geologica Sinica, 2012, 86(4): 611−618. doi: 10.3969/j.issn.0001-5717.2012.04.007

    CrossRef Google Scholar

    [18] 周玲, 千琳勃, 赵素梅, 等. 基于耳石核心氧同位素 SHRIMP 分析研究青海湖裸鲤繁殖特征[J]. 岩矿测试, 2023, 42(3): 464−477. doi: 10.15898/j.ykcs.202209280183

    CrossRef Google Scholar

    Zhou L, Qian L B, Zhao S M, et al. Analyzing the reproductive characteristics of the Naked Carp Gymnocypris Przewalskii (Kessler) based on the oxygen isotopes of otolith core using SHRIMP[J]. Rock and Mineral Analysis, 2023, 42(3): 464−477. doi: 10.15898/j.ykcs.202209280183

    CrossRef Google Scholar

    [19] 李献华, 唐国强, 龚冰, 等. Qinghu(清湖)锆石: 一个新的U-Pb年龄和O, Hf同位素微区分析工作标样[J]. 科学通报, 2013, 58: 1954−1961. doi: 10.1360/csb2013-58-20-1954

    CrossRef Google Scholar

    Li X H, Tang G Q, Guo B, et al. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin, 2013, 58: 1954−1961. doi: 10.1360/csb2013-58-20-1954

    CrossRef Google Scholar

    [20] 李秋立, 杨蔚, 刘宇, 等. 离子探针微区分析技术及其在地球科学中的应用进展[J]. 矿物岩石地球化学通报, 2013, 32(3): 310−327. doi: 10.3969/j.issn.1007-2802.2013.03.004

    CrossRef Google Scholar

    Li Q L, Yang W, Liu Y, et al. Ion microprobe microanalytical techniques and their applications in Earth sciences[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(3): 310−327. doi: 10.3969/j.issn.1007-2802.2013.03.004

    CrossRef Google Scholar

    [21] Treble P C, Schmitt A K, Edwards R L, et al. High resolution secondary ionisation mass spectrometry (SIMS) δ18O analyses of Hulu Cave speleothem at the time of Heinrich Event 1[J]. Chemical Geology, 2007, 238(3−4): 197−212. doi: 10.1016/j.chemgeo.2006.11.009

    CrossRef Google Scholar

    [22] Kita N T, Ushikubo T, Fu B, et al. High precision SIMS oxygen isotope analysis and the effect of sample topography[J]. Chemical Geology, 2009, 264(1-4): 43−57. doi: 10.1016/J.CHEMGEO.2009.02.012

    CrossRef Google Scholar

    [23] Ickert R B, Hiess J, Williams I S, et al. Determining high precision, in situ, oxygen isotope ratios with a SHRIMP Ⅱ: Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites[J]. Chemical Geology, 2008, 257(1−2): 114−128. doi: 10.1016/j.chemgeo.2008.08.024

    CrossRef Google Scholar

    [24] 龙涛, 石坚, 包泽民, 等. 边缘效应和几何效应对SHRIMP IIe MC氧同位素分析精度影响[J]. 分析化学, 2015, 43(12): 1888−1894. doi: 10.11895/j.issn.0253-3820.150581

    CrossRef Google Scholar

    Long T, Shi J, Bao Z M, et al. Influence of edge effect and X-Y effect on measurement precision in sensitive high resolution ion microprobe Ⅱe MC oxygen isotopes analysis[J]. Chinese Journal of Analytical Chemistry, 2015, 43(12): 1888−1894. doi: 10.11895/j.issn.0253-3820.150581

    CrossRef Google Scholar

    [25] 刘敦一, 王晨. 国家科技基础条件平台——北京离子探针中心[J]. 岩矿测试, 2012, 31(4): 753−756. doi: 10.3969/j.issn.0254-5357.2012.04.032

    CrossRef Google Scholar

    Liu D Y, Wang C. The Beijing SHRIMP Centre, National Science and Technology Infrastructure[J]. Rock and Mineral Analysis, 2012, 31(4): 753−756. doi: 10.3969/j.issn.0254-5357.2012.04.032

    CrossRef Google Scholar

    [26] Avila J N, Ireland T R, Holden P, et al. High-precision, high-accuracy oxygen isotope measurements of zircon reference materials with the SHRIMP-SI[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 85−102. doi: 10.1111/ggr.12298

    CrossRef Google Scholar

    [27] 杨之青, 刘敦一, 房建国, 等. 高分辨二次离子质谱超高真空样品台的研制[J]. 质谱学报, 2016, 37(5): 408−413. doi: 10.7538/zpxb.2016.37.05.0408

    CrossRef Google Scholar

    Yang Z Q, Liu D Y, Fang J G, et al. Innovative high resolution 3D sample stage in ultra-high vacuum for SIMS[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(5): 408−413. doi: 10.7538/zpxb.2016.37.05.0408

    CrossRef Google Scholar

    [28] Fu B, Bröcker M, Ireland T, et al. Zircon U-Pb, O, and Hf isotopic constraints on Mesozoic magmatism in the Cyclades, Aegean Sea, Greece[J]. International Journal of Earth Sciences, 2015, 104: 75−87. doi: 10.1007/s00531-014-1064-z

    CrossRef Google Scholar

    [29] Hu Z C, Li X H, Luo T, et al. Tanz zircon megacrysts: A new zircon reference material for the microbeam determination of U-Pb ages and Zr-O isotopes[J]. Journal of Analytical Atomic Spectrometry, 2021, 36: 2715−2734. doi: 10.1039/d1ja00311a

    CrossRef Google Scholar

    [30] 夏小平, 雷斌, 杨晴, 等. 锆石SIMS氧同位素测试进展[J]. 地质学报, 2015, 89(S1): 88−89.

    Google Scholar

    Xia X P, Lei B, Yang Q, et al. Progress in zircon SIMS oxygen isotope testing[J]. Acta Geological Sinica, 2015, 89(S1): 88−89.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(487) PDF downloads(86) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint