2024 Vol. 43, No. 9
Article Contents

SHAO Xingkun, HOU Hongxing, REN Bingzhang, SHI Lingfeng, ZHAN Zedong, XI Guangyue, LI Junhua, CAO Longyu, GAO Yuan. 2024. Sedimentary characteristics analysis and paleoenvironmental restoration of the ground substrate in Baiquan County, Qiqihar area, Songnen Plain. Geological Bulletin of China, 43(9): 1498-1514. doi: 10.12097/gbc.2023.08.039
Citation: SHAO Xingkun, HOU Hongxing, REN Bingzhang, SHI Lingfeng, ZHAN Zedong, XI Guangyue, LI Junhua, CAO Longyu, GAO Yuan. 2024. Sedimentary characteristics analysis and paleoenvironmental restoration of the ground substrate in Baiquan County, Qiqihar area, Songnen Plain. Geological Bulletin of China, 43(9): 1498-1514. doi: 10.12097/gbc.2023.08.039

Sedimentary characteristics analysis and paleoenvironmental restoration of the ground substrate in Baiquan County, Qiqihar area, Songnen Plain

More Information
  • Ground substrate is a new concept in natural resource management, which is the fundamental material supporting the breeding of various natural resources. Strengthening the analysis of ground substrate sedimentary environment and the restoration of paleoenvironment is of great significance for studying its formation mechanism. This article analyzes the sedimentary characteristics and the sedimentary environment of a 50 m shallow ground substrate, based on the data of full core clay minerals, carbonates, magnetic susceptibility, and carbon elements. The research results indicate that there are 16 layers of soil substrate vertically distributed in the study area, exhibiting a transitional sedimentary evolution from deep to shallow, characterized by lacustrine sedimentation → continental eolian facies → meadow facies.The deep lakeside facies and embankment sediments are formed in cold and extremely dry environments, the middle deep lake sediments are formed in warm and humid environments, and the shallow surface meadow and aeolian sediments are formed in relatively dry and cold environments. Based on previous data and 14C, photoluminescence and ESR dating results, the sedimentary evolution stage of the study area is divided into the late Early Pleistocene to early Middle Pleistocene dry cold sedimentary stage, the warm lacustrine sedimentary stage in the middle and late Middle Pleistocene, the Late Pleistocene to Early Holocene eolian loess sedimentary stage and the black soil sedimentary stage in the Middle and Late Holocene.

  • 加载中
  • [1] Chen L, Sun Y G, Shang X Y, et al. 2022. Geological survey method for the ground substrate survey of natural resource: Taking Zhangbei demonstration zone as an example[J]. Henan Science and Technology, 41(21): 99−102(in Chinese with English abstract).

    Google Scholar

    [2] Chen P, Hou H X, Ma J C, et al. 2023. Investigation and research idea on black soil surface matrix in low mountain and hilly regions: A case study of Zhalantun area[J]. Natural Resource Economics of China, 81(9): 81−89(in Chinese with English abstract).

    Google Scholar

    [3] Fang X M, Galy A, Yang Y B, et al. 2019. Paleogene global cooling—induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau[J]. Geology, 47(10): 992−996. doi: 10.1130/G46422.1

    CrossRef Google Scholar

    [4] Fu J Y, Li Y C, Zhao C J, et al. 2018. Geotechnical map of Northeast China (1∶1.5 million scale)[M]. Beijing: Geological Publishing House(in Chinese).

    Google Scholar

    [5] Ge L S, Yang G C. 2020. New field of Natural resources survey and monitoring: Ground substrate survey[J]. Natural Resource Economics of China, 33(9): 4−11,67(in Chinese with English abstract).

    Google Scholar

    [6] Hao A B, Yin Z Q, Peng L, et al. 2020. A discussion of the classification of natural resources based on the combination of academic−legal principles and management[J]. Hydrogeology and Engineering Geology, 47(6): 1−7(in Chinese with English abstract).

    Google Scholar

    [7] Hou H X, Lu M, Qin T, et al. 2024. Methodology for surface matrix investigation[M]. Beijing: China University of Geosciences Press: 6. (in Chinese).

    Google Scholar

    [8] Hou H X, Ge L S, Sun X, et al. 2022. A study on the application of ground substrate in the survey and evaluation of China's black soil resources: Based on ground substrate survey in Baoqing, Heilongjiang Province[J]. Journal of Natural Resources, 37(9): 2264−2276(in Chinese with English abstract). doi: 10.31497/zrzyxb.20220905

    CrossRef Google Scholar

    [9] Hou H X, Zhang S J, Lu M, et al. 2021. Technology and method of the ground substrate layer survey of natural resources: Taking Baoding area as an example[J]. Northwestern Geology, 54(3): 277−288(in Chinese with English abstract).

    Google Scholar

    [10] Hou H X, Ge L S, Sun X, et al. 2021. Discussion on the content and elements attribute index system of surface matrix survey[J]. Natural Science, 9(4): 433−442(in Chinese with English abstract).

    Google Scholar

    [11] Hu B, Zhang C X, Wu H B, et al. 2019. Clay mineralogy of an Eocene fluvial−lacustrine sequence in Xining Basin, Northwest China, and its paleoclimatic implications[J]. Scientia Sinica Terrae, 49(3): 569−583(in Chinese with English abstract). doi: 10.1360/N072018-00101

    CrossRef Google Scholar

    [12] Jia L, Liu H, Ouyang Y, et al. 2022. Division scheme of surface substrate mapping units of mountainous−hilly area in South China based on geological formations research: Example from Xinhui−Taishan area in Pearl River Delta[J]. Northwestern Geology, 55(4): 140−157(in Chinese with English abstract).

    Google Scholar

    [13] Li X, Zhou X H, Xiang Z Q, et al. 2023. Simply discussion on the work of ground substrate survey: taking Hainan Island as an example[J]. Geological Bulletin of China, 42(1): 68−75(in Chinese with English abstract).

    Google Scholar

    [14] Ministry of Natural Resources. 2020a. General scheme for construction of natural resources survey and moniyoring system[Z](in Chinese).

    Google Scholar

    [15] Ministry of Natural Resources. 2020b. Classification Scheme for Surface Matrix (Trial)[Z](in Chinese).

    Google Scholar

    [16] Ministry of Natural Resources. 2020. Overall plan for investigation of black soil surface matrix [Z](in Chinese).

    Google Scholar

    [17] Ren Z Y, Wu P, Cao X X. 2016. Clay minerals and their palaeoclimatic indicators in the Mawo karst basin in Weining, Guizhou[J]. Sedimentary Geology and Tethyan Geology, 36(1): 70−76(in Chinese with English abstract).

    Google Scholar

    [18] Song Y H, Liu K, Dai H M. et al. 2022. Palynological assemblages of typical black soil profile in the eastern Songliao Plain and their age and its implication for paleoclimatic[J]. Geological Bulletin of China, 41(9): 165−177 (in Chinese with English abstract).

    Google Scholar

    [19] Wu J X, Xia G Q, Chen Y, et al. 2022. Characterisitics of clay mineralogy and its paleoclimatic significance across the Oligocene−Miocene transition in Lunpola Basin, Central Tibet[J]. Acta Sedimentologica Sinica, 40(5): 1265−1279(in Chinese with English abstract).

    Google Scholar

    [20] Xi J J, Fu C F, Meng Y Y, et al. 2018. Carbonate content of Jianzha Basin in Northeastern margin of the tibatan plateau and paleoclimatic significance[J]. Quaternary Sciences, 38(1): 107−117(in Chinese with English abstract).

    Google Scholar

    [21] Xia Y M, Wang P F. 1987. The paleobotany and paleoclimate in the Songnen Plain: A study on the Late Tertiary−Pleistocene spore pollen assemblages[J]. Acta Geographica Sinica, 42(2): 165–177(in Chinese).

    Google Scholar

    [22] Yin Z Q, Chen Z R, Li X, et al. 2023. Connotation, layering, mapping and supporting objectives of the integrated survey of ground substrates[J]. Hydrogeology & Engineering Geology, 50(1): 144−151(in Chinese with English abstract).

    Google Scholar

    [23] Yin Z Q, Qin X G, Zhang S J, et al. 2020. Preliminary study on classification and investigation of surface substrate[J]. Hydrogeology & Engineering Geology, 11(6): 8−14(in Chinese with English abstract).

    Google Scholar

    [24] Zhan T, Yang Y, Zeng F M, et al. 2023. Magnetostratigraphy and magnetic susceptibility of the Dumeng borehole sequence from Northeeast China Plain and implications for sedimentary evolution of the Songnen paleo−lake.[J]. Chinese Journal of Geophysics, 66(2): 673−684(in Chinese with English abstract).

    Google Scholar

    [25] Zhao C, Li X Q, Zhou X Y, et al. 2016. Holocene vegetation succession and responses to climate change in the northern sector of Northeast China[J]. Scientia Sinica(Terrae), 46(6): 870−880(in Chinese with English abstract).

    Google Scholar

    [26] Zhao F Y. 2010. A Study of the regularity of Quaternary geological history evolution in Songliao plain based on geological remote sensing survey[J]. Remote Sensing for Land and Resources, 86: 152–158(in Chinese with English abstract).

    Google Scholar

    [27] Zhao Q, Xie Y Y, Hao D M, et al. 2022. Climatic aridification in Songnen Plain since the Middle Pleistocene from Harbin Loess records[J]. Acta Sedimentologica Sinica, 40(6): 1702−1717(in Chinese with English abstract).

    Google Scholar

    [28] 陈龙, 孙勇刚, 尚晓雨, 等. 2022. 坝上地区自然资源地表基质调查地质测量方法探讨——以张北示范区为例[J]. 河南科技, 41(21): 99−102.

    Google Scholar

    [29] 陈彭, 侯红星, 马骏驰, 等. 2023. 低山丘陵区黑土地地表基质调查研究思路——以扎兰屯地区为例[J]. 中国国土资源经济, 81(9): 81−89.

    Google Scholar

    [30] 付俊彧, 李英才, 赵春荆, 等. 2018. 东北地区大地构造相图(1∶150万)说明书[M]. 北京: 地质出版社.

    Google Scholar

    [31] 葛良胜, 杨贵才. 2020. 自然资源调查监测工作新领域: 地表基质调查[J]. 中国国土资源经济, 33(9): 4−11,67.

    Google Scholar

    [32] 郝爱兵, 殷志强, 彭令, 等. 2020. 学理与法理和管理相结合的自然资源分类刍议[J]. 水文地质工程地质, 47(6): 1−7.

    Google Scholar

    [33] 侯红星, 葛良胜, 孙肖, 等. 2022. 地表基质在中国黑土地资源调查评价中的应用探讨——基于黑龙江宝清地区地表基质调查[J]. 自然资源学报, 37(9): 2264−2276.

    Google Scholar

    [34] 侯红星, 张蜀冀, 鲁敏, 等. 2021a. 自然资源地表基质层调查技术方法新经验: 以保定地区地表基质层调查为例[J]. 西北地质, 54(3): 277−288.

    Google Scholar

    [35] 侯红星, 葛良胜, 孙肖, 等. 2021b. 地表基质调查内容及要素—属性指标体系探讨[J]. 自然科学, 9(4): 433−442.

    Google Scholar

    [36] 侯红星, 鲁敏, 秦天, 等. 2024. 地表基质调查工作方法[M]. 北京: 中国地质大学出版社: 6.

    Google Scholar

    [37] 胡彬, 张春霞, 吴海斌, 等. 2019. 西宁盆地始新世河湖相沉积序列粘土矿物组合特征及其古环境意义[J]. 中国科学(地球科学), 49(3): 569−583.

    Google Scholar

    [38] 贾磊, 刘洪, 欧阳渊, 等. 2022. 基于地质建造的南方山地丘陵区地表基质填图单元划分方案——以珠三角新会—台山地区为例[J]. 西北地质, 55(4): 140−157.

    Google Scholar

    [39] 李响, 周效华, 相振群, 等. 2023. 地表基质调查的工作思路刍议: 以海南岛为例[J]. 地质通报, 42(1): 68−75.

    Google Scholar

    [40] 任增莹, 吴攀, 曹星星. 2016. 贵州威宁麻窝山岩溶盆地沉积物中粘土矿物特征及其古气候指示意义[J]. 沉积与特提斯地质, 36(1): 70−76.

    Google Scholar

    [41] 宋运红, 刘凯, 戴慧敏. 等. 2022. 松嫩平原东部典型黑土剖面孢粉组合、时代及其对古气候的指示[J]. 地质通报, 41(9): 165−177.

    Google Scholar

    [42] 吴劲宣, 夏国清, 陈云, 等. 2022. 西藏伦坡拉盆地渐新世—中新世之交粘土矿物特征及其古气候意义[J]. 沉积学报, 40(5): 1265−1279.

    Google Scholar

    [43] 席建建, 符超峰, 孟媛媛, 等. 2018. 青藏高原东北缘尖扎盆地碳酸盐含量及其古环境意义[J]. 第四纪研究, 38(1): 107−117.

    Google Scholar

    [44] 夏玉梅, 汪佩芳. 1987. 松嫩平原晚第三纪—更新世孢粉组合及古植被与古气候的研究[J]. 地理学报, 42(2): 165−177.

    Google Scholar

    [45] 殷志强, 陈自然, 李霞, 等. 2023. 地表基质综合调查: 内涵、分层、填图与支撑目标[J]. 水文地质工程地质, 50(1): 144−151.

    Google Scholar

    [46] 殷志强, 秦小光, 张蜀冀, 等. 2020. 地表基质分类及调查初步研究[J]. 水文地质工程地质, 11(6): 8−14.

    Google Scholar

    [47] 詹涛, 杨业, 曾方明, 等. 2023. 东北平原杜蒙钻孔的磁性地层学和磁化率对松嫩古湖演化的指示[J]. 地球物理学报, 66(2): 673−684.

    Google Scholar

    [48] 赵超, 李小强, 周新郢, 等. 2016. 北大兴安岭地区全新世植被演替及气候响应[J]. 中国科学: 地球科学, 46(6): 870−880.

    Google Scholar

    [49] 赵福岳. 2010. 松辽平原的第四纪地质历史演化规律研究[J]. 国土资源遥感, 86: 152−158.

    Google Scholar

    [50] 赵倩, 谢远云, 郝冬梅, 等. 2022. 松嫩平原中更新世以来气候干旱化−来自哈尔滨黄土记录[J]. 沉积学报, 40(6): 1702−1717.

    Google Scholar

    [51] 自然资源部. 2020a. 自然资源调查监测体系构建总体方案[Z].

    Google Scholar

    [52] 自然资源部. 2020b. 地表基质分类方案(试行)[Z].

    Google Scholar

    [53] 自然资源部. 2022. 黑土地地表基质调查总体方案[Z].

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(7)

Article Metrics

Article views(349) PDF downloads(69) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint