Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 4
Article Contents

JIANG Aosong, WU Longhua, LI Zhu. Application of Energy Dispersive X-ray Fluorescence Spectroscopy in Analysis of Heavy Metals in Soil: A Review[J]. Rock and Mineral Analysis, 2024, 43(4): 659-675. doi: 10.15898/j.ykcs.202312230186
Citation: JIANG Aosong, WU Longhua, LI Zhu. Application of Energy Dispersive X-ray Fluorescence Spectroscopy in Analysis of Heavy Metals in Soil: A Review[J]. Rock and Mineral Analysis, 2024, 43(4): 659-675. doi: 10.15898/j.ykcs.202312230186

Application of Energy Dispersive X-ray Fluorescence Spectroscopy in Analysis of Heavy Metals in Soil: A Review

More Information
  • With the process of urbanization and industrialization, heavy metals enter the ecological environment through various pathways and accumulate in large quantities in the soil, causing potential risks to soil environmental health. In recent years, with the development of energy dispersive X-ray fluorescence spectroscopy (ED-XRF), the detection limit of the instrument has been significantly reduced, and it can be effectively applied to the detection of various heavy metals in soil, and is gradually becoming an effective tool for determining the concentration of heavy metals in the soil environment. However, the complexity of the soil matrix and the limitations of the instrument itself will lead to problems such as low accuracy and precision in the determination of target heavy metals by ED-XRF, such as the type and particle size of soil samples and the noise in the instrument and the environment; there are also certain difficulties in the establishment of quantitative analysis model methods, which are still not well applied to laboratories and other environments with high data quality requirements. In this paper, we summarize the application and research progress of XRF in the field of soil heavy metal detection, explore and analyze the influence of different soil sample states and detection conditions on the detection accuracy of ED-XRF instruments, sort out the main pretreatment methods of ED-XRF spectroscopy and the establishment process of quantitative analysis models, and introduce and analyze the application potential of ED-XRF in evaluating the effectiveness of soil heavy metals. At present, the soil sample preparation procedures applied to ED-XRF detection have been relatively mature, and the opinions of scholars on how to reduce the impact of soil matrix effects on the operation methods are relatively unanimous, that is, to use dry samples, low particle size or pressed soil samples as much as possible, and there is still some room for optimization in the processing and analysis of detection data. Therefore, the current mainstream focus is on combining the advantages of different algorithms for the preprocessing analysis of ED-XRF spectroscopy and the establishment of quantitative analysis models to improve the accuracy of ED-XRF detection. At the same time, ED-XRF detection studies on different types of soils only highlighted the differences in the phenomenon, and did not clearly explore the underlying mechanisms. In the future, it is important to continue to explore the causes and magnitude of different matrix effects in various types of soils, and to optimize and improve the quantitative analysis model of ED-XRF spectroscopy; the prediction of the effectiveness of heavy metals in soil through multiple regression analysis is also a field that scholars should focus on.

  • 加载中
  • [1] 杨正标, 何青青, 王珂, 等. 便携式XRF在污染地块土壤金属元素调查中的应用[J]. 环境监控与预警, 2023, 15(1): 23−26, 51. doi: 10.3969/j.issn.1674-6732.2023.01.004

    CrossRef Google Scholar

    Yang Z B, He Q Q, Wang K, et al. Application of portable XRF in investigation of metal elements in contaminated soil[J]. Environmental Monitoring and Early Warning, 2023, 15(1): 23−26, 51. doi: 10.3969/j.issn.1674-6732.2023.01.004

    CrossRef Google Scholar

    [2] 姚真真, 李玲, 张志扬, 等. 我国土壤元素分析方法标准体系现状研究[J]. 农产品质量与安全, 2019(5): 69−74. doi: 10.3969/j.issn.1674-8255.2019.05.014

    CrossRef Google Scholar

    Yao Z Z, Li L, Zhang Z Y, et al. Research on the status quo of standard system of soil element analysis methods in China[J]. Quality and Safety of Agricultural Products, 2019(5): 69−74. doi: 10.3969/j.issn.1674-8255.2019.05.014

    CrossRef Google Scholar

    [3] 李冰, 周剑雄, 詹秀春. 无机多元素现代仪器分析技术[J]. 地质学报, 2011, 85(11): 1878−1916. doi: 11-1951/P.20111025.0834.003

    CrossRef Google Scholar

    Li B, Zhou J X, Zhan X C. Modern instrumental analysis techniques for inorganic multi-element[J]. Acta Geologica Sinica, 2011, 85(11): 1878−1916. doi: 11-1951/P.20111025.0834.003

    CrossRef Google Scholar

    [4] 王晨希. XRF、ICP-OES及FAAS测定土壤样品中重金属元素对比研究[J]. 绿色科技, 2021, 23(6): 23−24. doi: 10.3969/j.issn.1674-9944.2021.06.007

    CrossRef Google Scholar

    Wang C X. Comparative study on the determination of heavy metal elements in soil samples by XRF, ICP-OES and FAAS[J]. Green Science and Technology, 2021, 23(6): 23−24. doi: 10.3969/j.issn.1674-9944.2021.06.007

    CrossRef Google Scholar

    [5] Brown G, Kanaris-Sotiriou R. The determination of sulphur in soils X-ray fluorescence analysis[J]. Annales Agronomiques, 1967, 18(6): 653. doi: 10.1039/an9699400782

    CrossRef Google Scholar

    [6] Brumme M, Heckel J, Irmer K. Influence of polarization of exciting X-radiation on sensitivity of energy dispersive X-ray fluorescence trace analysis at rocks and soils[J]. Isotopenpraxis Isotopes in Environmental and Health Studies, 1990, 26(7): 341−342. doi: 10.1080/10256019008624324

    CrossRef Google Scholar

    [7] Kubala-Kukuś A, Banaś D, Braziewicz J, et al. X-ray spectrometry and X-ray microtomography techniques for soil and geological samples analysis[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2015, 364: 85−92. doi: 10.1016/j.nimb.2015.07.136

    CrossRef Google Scholar

    [8] Chuparina E V, Gunicheva T N. Nondestructive X-ray fluorescence determination of some elements in plant materials[J]. Journal of Analytical Chemistry, 2003, 58(9): 856−861. doi: 10.1023/A:1025689202055

    CrossRef Google Scholar

    [9] 吉昂. X射线荧光光谱三十年[J]. 岩矿测试, 2012, 31(3): 383−398. doi: 10.3969/j.issn.0254-5357.2012.03.002

    CrossRef Google Scholar

    Ji A. Thirty years of X-ray fluorescence spectroscopy[J]. Rock and Mineral Analysis, 2012, 31(3): 383−398. doi: 10.3969/j.issn.0254-5357.2012.03.002

    CrossRef Google Scholar

    [10] 赖裕瑈. 基于SDD探测器X荧光仪的应用探讨[D]. 南昌: 东华理工大学, 2015.

    Google Scholar

    Lai Y R. Application of X-ray fluorescence instrument based on SDD detector[D]. Nanchang: East China University of Technology, 2015.

    Google Scholar

    [11] 程大伟, 刘明博, 沈学静, 等. 双曲面弯晶X射线分析仪器及应用进展[J]. 冶金分析, 2022, 42(1): 10−17. doi: 10.13228/j.boyuan.issn1000-7571.011498

    CrossRef Google Scholar

    Cheng D W, Liu M B, Shen X J. Hyperboloid bent crystal X-ray analysis instrument and application progress[J]. Metallurgical Analysis, 2022, 42(1): 10−17. doi: 10.13228/j.boyuan.issn1000-7571.011498

    CrossRef Google Scholar

    [12] 张勤, 樊守忠, 潘宴山, 等. X射线荧光光谱法测定化探样品中主、次和痕量组分[J]. 理化检验(化学分册), 2005, 41(8): 547−552. doi: 10.3321/j.issn:1001-4020.2005.08.003

    CrossRef Google Scholar

    Zhang Q, Fan S Z, Pan Y S. Determination of primary, secondary and trace components in geochemical samples by X-ray fluorescence spectroscopy[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2005, 41(8): 547−552. doi: 10.3321/j.issn:1001-4020.2005.08.003

    CrossRef Google Scholar

    [13] 何姣姣, 江荣风, 王雁峰, 等. X射线荧光光谱法在测定土壤及植物、矿质养分方面的应用[J]. 中国土壤与肥料, 2020(1): 1−7. doi: 10.11838/sfsc.1673-6257.19047

    CrossRef Google Scholar

    He J J, Jiang R F, Wang Y F. Application of X-ray fluorescence spectroscopy in the determination of mineral nutrients in soil and plants[J]. China Soil and Fertilizer, 2020(1): 1−7. doi: 10.11838/sfsc.1673-6257.19047

    CrossRef Google Scholar

    [14] 张杰. 土壤重金属XRF光谱重叠峰解析及含量反演模型研究[D]. 秦皇岛: 燕山大学, 2021.

    Google Scholar

    Zhang J. Study on analysis of overlapping peaks of soil heavy metal XRF spectra and content inversion model[D]. Qinhuangdao: Yanshan University, 2021.

    Google Scholar

    [15] 林照彬. 便携式XRF土壤重金属分析仪快速检测与国标方法比对研究[J]. 皮革制作与环保科技, 2021, 2(10): 34−35, 37.

    Google Scholar

    Lin Z B. Comparison of portable XRF soil heavy metal analyzer with national standard method[J]. Leather Making and Environmental Technology, 2021, 2(10): 34−35, 37.

    Google Scholar

    [16] dos Anjos M, Lopes R, de Jesus E, et al. Quantitative analysis of metals in soil using X-ray fluorescence[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2000, 55(7): 1189−1194. doi: 10.1016/S0584-8547(0)00165-8

    CrossRef Google Scholar

    [17] Jang M. Application of portable X-ray fluorescence (pXRF) for heavy metal analysis of soils in crop fields near abandoned mine sites[J]. Environmental Geochemistry and Health, 2010, 32(3): 207−216. doi: 10.1007/s10653-009-9276-z

    CrossRef Google Scholar

    [18] Wan M, Hu W, Qu M, et al. Application of arc emission spectrometry and portable X-ray fluorescence spectrometry to rapid risk assessment of heavy metals in agricultural soils[J]. Ecological Indicators, 2019, 101: 583−594. doi: 10.1016/j.ecolind.2019.01.069

    CrossRef Google Scholar

    [19] 韩平, 王纪华, 陆安祥, 等. 便携式X射线荧光光谱分析仪测定土壤中重金属[J]. 光谱学与光谱分析, 2012, 32(3): 826−829. doi: 10.3964/j.issn.1000-0593(2012)03-0826-04

    CrossRef Google Scholar

    Han P, Wang J H, Lu A X, et al. Determination of heavy metals in soil by portable X-ray fluorescence spectrometer[J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 826−829. doi: 10.3964/j.issn.1000-0593(2012)03-0826-04

    CrossRef Google Scholar

    [20] Radu T, Gallagher S, Byrne B, et al. Portable X-ray fluorescence as a rapid technique for surveying elemental distributions in soil[J]. Spectroscopy Letters, 2013, 46(7): 516−526. doi: 10.1080/00387010.2013.763829

    CrossRef Google Scholar

    [21] Paulette L, Man T, Weindorf D C, et al. Rapid assessment of soil and contaminant variability via portable X-ray fluorescence spectroscopy: Copşa Mică, Romania[J]. Geoderma, 2015, 243–244: 130–140.

    Google Scholar

    [22] Peinado F M, Ruano S M, González M G B, et al. A rapid field procedure for screening trace elements in polluted soil using portable X-ray fluorescence (PXRF)[J]. Geoderma, 2010, 159(1–2): 76−82. doi: 10.1016/j.geoderma.2010.06.019

    CrossRef Google Scholar

    [23] 焦思. 基于PXRF的土壤重金属污染空间异质性分析[D]. 南京: 南京林业大学, 2021.

    Google Scholar

    Jiao S. Spatial heterogeneity analysis of soil heavy metal pollution based on PXRF[D]. Nanjing: Nanjing Forestry University, 2021.

    Google Scholar

    [24] Qu M, Chen J, Huang B. Resampling with in situ field portable X-ray fluorescence spectrometry (FPXRF) to reduce the uncertainty in delineating the remediation area of soil heavy metals[J]. Environmental Pollution, 2021, 271: 116310. doi: 10.1016/j.envpol.2020.116310

    CrossRef Google Scholar

    [25] 彭洪柳. 粤北某铅锌冶炼厂周边农田镉铅污染风险与修复技术初探[D]. 芜湖: 安徽师范大学, 2019.

    Google Scholar

    Peng H L. A preliminary study on cadmium and lead pollution risk and remediation technology in farmland around a lead-zinc smelter in Northern Guangdong[D]. Wuhu: Anhui Normal University, 2019.

    Google Scholar

    [26] 孟蕾, 韩平, 王世芳, 等. X射线荧光光谱在土壤重金属检测中的应用进展[J]. 食品与机械, 2017, 33(8): 210−213. doi: 10.13652/j.issn.1003-5788.2017.08.045

    CrossRef Google Scholar

    Meng L, Han P, Wang S F, et al. Application progress of X-ray fluorescence spectroscopy in the detection of heavy metals in soil[J]. Food & Machinery, 2017, 33(8): 210−213. doi: 10.13652/j.issn.1003-5788.2017.08.045

    CrossRef Google Scholar

    [27] 武天云, Schoenau J J, 李凤民, 等. 土壤有机质概念和分组技术研究进展[J]. 应用生态学报, 2004, 15(4): 717−722. doi: 10.3321/j.issn:1001-9332.2004.04.036

    CrossRef Google Scholar

    Wu T Y, Schoenau J J, Li F M, et al. Research progress on soil organic matter concept and grouping technology[J]. Chinese Journal of Applied Ecology, 2004, 15(4): 717−722. doi: 10.3321/j.issn:1001-9332.2004.04.036

    CrossRef Google Scholar

    [28] Marguí E, Queralt I, Hidalgo M. Application of X-ray fluorescence spectrometry to determination and quantitation of metals in vegetal material[J]. TrAC Trends in Analytical Chemistry, 2009, 28(3): 362−372. doi: 10.1016/j.trac.2008.11.011

    CrossRef Google Scholar

    [29] Shand C A, Wendler R. Portable X-ray fluorescence analysis of mineral and organic soils and the influence of organic matter[J]. Journal of Geochemical Exploration, 2014, 143: 31−42. doi: 10.1016/j.gexplo.2014.03.005

    CrossRef Google Scholar

    [30] 彭洪柳, 杨周生, 赵婕, 等. 高精度便携式X射线荧光光谱仪在污染农田土壤重金属速测中的应用研究[J]. 农业环境科学学报, 2018, 37(7): 1386−1395. doi: 10.11654/jaes.2018-0568

    CrossRef Google Scholar

    Peng H L, Yang Z S, Zhao J, et al. Application of high-precision portable X-ray fluorescence spectrometer in the rapid detection of heavy metals in polluted farmland soil[J]. Journal of Agro-Environment Science, 2018, 37(7): 1386−1395. doi: 10.11654/jaes.2018-0568

    CrossRef Google Scholar

    [31] 陈曾思澈, 徐亚, 雷国元, 等. PXRF土壤重金属检测的影响因素、模式与校正方法[J]. 中国环境科学, 2020, 40(2): 708−715. doi: 10.3969/j.issn.1000-6923.2020.02.030

    CrossRef Google Scholar

    Chenzeng S C, Xu Y, Lei G Y, et al. Influencing factors, modes and correction methods for soil heavy metal detection by PXRF[J]. China Environmental Science, 2020, 40(2): 708−715. doi: 10.3969/j.issn.1000-6923.2020.02.030

    CrossRef Google Scholar

    [32] Costa Y T, Ribeiro B T, Curi N, et al. Organic matter removal on oxide determination in Oxisols via portable X-ray fluorescence[J]. Communications in Soil Science and Plant Analysis, 2019, 50(6): 673−681. doi: 10.1080/00103624.2019.1589479

    CrossRef Google Scholar

    [33] Ravansari R, Lemke L D. Portable X-ray fluorescence trace metal measurement in organic rich soils: pXRF response as a function of organic matter fraction[J]. Geoderma, 2018, 319: 175−184. doi: 10.1016/j.geoderma.2018.01.011

    CrossRef Google Scholar

    [34] Sut‐Lohmann M, Ramezany S, Kästner F. Feasibility of pXRF to evaluate chosen heavy metals in soil highly influenced by municipal waste disposal—A monitoring study of a former sewage farm[J]. Land Degradation & Development, 2022, 33(3): 439−451. doi: 10.1002/ldr.4147

    CrossRef Google Scholar

    [35] 傅赵聪, 王翀, 吴春发, 等. HDXRF法农田土壤镉测定结果准确度评价与精准校正模型构建[J]. 土壤, 2023, 55(4): 829−837. doi: 10.13758/j.cnki.tr.2023.04.017

    CrossRef Google Scholar

    Fu Z C, Wang C, Wu C F, et al. Accuracy evaluation and accurate correction model construction of cadmium determination results in farmland soil by HDXRF method[J]. Soils, 2023, 55(4): 829−837. doi: 10.13758/j.cnki.tr.2023.04.017

    CrossRef Google Scholar

    [36] 曹发明. XRF分析技术在土壤重金属检测中的应用研究[D]. 成都: 成都理工大学, 2014.

    Google Scholar

    Cao F M. Application of XRF analysis in soil heavy metal detection[D]. Chengdu: Chengdu University of Technology, 2014.

    Google Scholar

    [37] 倪子月, 陈吉文, 刘明博, 等. 能量色散X射线荧光光谱法测定土壤中铬和锰的干扰校正[J]. 冶金分析, 2016, 36(10): 10−14. doi: 10.13228/j.boyuan.issn1000-7571.009844

    CrossRef Google Scholar

    Ni Z Y, Chen J W, Liu M B, et al. Interference correction for determination of chromium and manganese in soil by energy dispersive X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2016, 36(10): 10−14. doi: 10.13228/j.boyuan.issn1000-7571.009844

    CrossRef Google Scholar

    [38] 周云泷. X射线荧光法分析土壤中重金属含量[D]. 成都: 成都理工大学, 2015.

    Google Scholar

    Zhou Y L. Analysis of heavy metals in soil by X-ray fluorescence[D]. Chengdu: Chengdu University of Technology, 2015.

    Google Scholar

    [39] Ulmanu M, Anger I, Gamen E, et al. Rapid and low-cost determination of some heavy metals in soil using an X-ray fluorescence portable instrument[J]. Research Journal of Agricultural Science, 2011, 43(3): 235−241.

    Google Scholar

    [40] Lu J, Guo J, Wei Q, et al. A matrix effect correction method for portable X-ray fluorescence data[J]. Applied Sciences, 2022, 12(2): 568. doi: 10.3390/app12020568

    CrossRef Google Scholar

    [41] 章明奎. 亚热带山地垂直带土壤发生的讨论[J]. 中国农学通报, 2020, 36(23): 66−73.

    Google Scholar

    Zhang M K. Discussion on soil occurrence in the vertical zone of subtropical mountains[J]. Chinese Agricultural Science Bulletin, 2020, 36(23): 66−73.

    Google Scholar

    [42] 唐晓勇, 倪晓芳, 商照聪, 等. 土壤中铁对砷的便携式X射线荧光光谱仪分析基体效应研究与校正[J]. 冶金分析, 2021, 41(1): 69−74. doi: 10.13228/j.boyuan.issn1000-7571.011109

    CrossRef Google Scholar

    Tang X Y, Ni X F, Shang Z C, et al. Study and correction of matrix effect of iron on arsenic in soil by portable X-ray fluorescence spectrometer[J]. Metallurgical Analysis, 2021, 41(1): 69−74. doi: 10.13228/j.boyuan.issn1000-7571.011109

    CrossRef Google Scholar

    [43] 唐晓勇, 倪晓芳, 商照聪. 土壤中铁元素对铬元素p-XRF测定准确度的影响与校正[J]. 岩矿测试, 2020, 39(3): 467−474. doi: 10.15898/j.cnki.11-2131/td.201911200161

    CrossRef Google Scholar

    Tang X Y, Ni X F, Shang Z C. Effect and correction of iron in soil on the accuracy of p-XRF determination of chromium[J]. Rock and Mineral Analysis, 2020, 39(3): 467−474. doi: 10.15898/j.cnki.11-2131/td.201911200161

    CrossRef Google Scholar

    [44] 杨桂兰, 倪晓芳, 张长波. 基于便携式X射线荧光光谱法的土壤重金属快速检测[J]. 浙江农业学报, 2019, 31(11): 1903−1908. doi: 10.3969/j.issn.1004-1524.2019.21.17

    CrossRef Google Scholar

    Yang G L, Ni X F, Zhang C B. Rapid detection of heavy metals in soil based on portable X-ray fluorescence spectrometry[J]. Journal of Zhejiang Agricultural Sciences, 2019, 31(11): 1903−1908. doi: 10.3969/j.issn.1004-1524.2019.21.17

    CrossRef Google Scholar

    [45] 陆安祥, 王纪华, 潘立刚, 等. 便携式X射线荧光光谱测定土壤中Cr, Cu, Zn, Pb和As的研究[J]. 光谱学与光谱分析, 2010, 30(10): 2848−2852. doi: 10.3964/j.issn.1000-0593(2010)10-2848-05

    CrossRef Google Scholar

    Lu A X, Wang J H, Pan L G, et al. Determination of Cr, Cu, Zn, Pb and As in soil by portable X-ray fluorescence spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(10): 2848−2852. doi: 10.3964/j.issn.1000-0593(2010)10-2848-05

    CrossRef Google Scholar

    [46] 徐少强, 杨菲, 刘爽, 等. 便携式XRF对西南喀斯特地区碳酸盐岩风化壳土壤分析适用性评估[J]. 地球与环境, 2023, 31(2): 1−10. doi: 10.14050/j.cnki.1672-9250.2023.51.013

    CrossRef Google Scholar

    Xu S Q, Yang F, Liu S, et al. Applicability of portable XRF for carbonate weathered crust soil analysis in southwest karst region[J]. Earth and Environment, 2023, 31(2): 1−10. doi: 10.14050/j.cnki.1672-9250.2023.51.013

    CrossRef Google Scholar

    [47] 唐嫚, 曾沛艺, 杨牧青, 等. X射线荧光光谱仪在茶园土壤总砷含量检测中的应用研究——以昌宁县为例[J]. 现代农业科技, 2022(20): 127−132, 144. doi: 10.3969/j.issn.1007-5739.2022.20.033

    CrossRef Google Scholar

    Tang M, Zeng P Y, Yang M Q, et al. Application of X-ray fluorescence spectrometer in the detection of total arsenic content in tea plantation soil: A case study of Changning County[J]. Modern Agricultural Science and Technology, 2022(20): 127−132, 144. doi: 10.3969/j.issn.1007-5739.2022.20.033

    CrossRef Google Scholar

    [48] 李燕, 魏雨露, 夏龙飞. 便携式X荧光光谱仪在场地重金属污染调查中的应用研究[C]// 《环境工程》2019年全国学术年会论文集(下册). 北京: 《环境工程》编委会, 2019: 6.

    Google Scholar

    Li Y, Wei Y L, Xia L F. Application of portable X-ray fluorescence spectrometer in the investigation of heavy metal pollution in the site[C]//Proceedings of the 2019 National Academic Annual Conference of Environmental Engineering (Volume Ⅱ). Beijing: Editorial Board of 《Environmental Engineering》, 2019: 6.

    Google Scholar

    [49] 刘尚华, 陶光仪, 吉昂. X射线荧光光谱分析中的粉末压片制样法[J]. 光谱实验室, 1998, 15(6): 10−16. doi: 10.3969/j.issn.1004-8138.1998.06.003

    CrossRef Google Scholar

    Liu S H, Tao G Y, Ji A. Powder tablet preparation method in X-ray fluorescence spectroscopy[J]. Spectroscopy Laboratory, 1998, 15(6): 10−16. doi: 10.3969/j.issn.1004-8138.1998.06.003

    CrossRef Google Scholar

    [50] 金楚湄, 闫颖, 袁昕玥, 等. 影响XRF法测定土壤重金属Pb、Cd含量准确性的因素优化[J]. 山东化工, 2023, 52(19): 134−138, 142. doi: 10.3969/j.issn.1008-021X.2023.19.036

    CrossRef Google Scholar

    Jin C M, Yan Y, Yuan X Y, et al. Optimization of factors affecting the accuracy of XRF determination of soil heavy metal Pb and Cd content[J]. Shandong Chemical Industry, 2023, 52(19): 134−138, 142. doi: 10.3969/j.issn.1008-021X.2023.19.036

    CrossRef Google Scholar

    [51] Peralta E, Pérez G, Ojeda G, et al. Heavy metal availability assessment using portable X-ray fluorescence and single extraction procedures on former vineyard polluted soils[J]. Science of the Total Environment, 2020, 726: 138670. doi: 10.1016/j.scitotenv.2020.138670

    CrossRef Google Scholar

    [52] 钱原铬. X射线荧光光谱定量分析土壤中重金属方法研究[D]. 长春: 吉林大学, 2012.

    Google Scholar

    Qian Y G. Quantitative analysis of heavy metals in soil by X-ray fluorescence spectroscopy[D]. Changchun: Jilin University, 2012.

    Google Scholar

    [53] de Freitas M G, dos Santos F R, Parreira P S, et al. Influence of soil sample grain size on energy dispersive X-ray fluorescence analysis: A comparative study case with three spectrometers[J]. Spectroscopy Letters, 2021, 54(7): 560−570. doi: 10.1080/00387010.2021.1957941

    CrossRef Google Scholar

    [54] Ge L, Lai W, Lin Y. Influence of and correction for moisture in rocks, soils and sediments on in situ XRF analysis[J]. X-Ray Spectrometry, 2005, 34(1): 28−34. doi: 10.1002/xrs.782

    CrossRef Google Scholar

    [55] 朱梦杰. 便携式XRF测定仪在土壤检测中的应用及其影响因素[J]. 中国环境监测, 2019, 35(6): 129−137. doi: 10.19316/j.issn.1002-6002.2019.06.18

    CrossRef Google Scholar

    Zhu M J. Application of portable XRF analyzer in soil detection and its influencing factors[J]. China Environmental Monitoring, 2019, 35(6): 129−137. doi: 10.19316/j.issn.1002-6002.2019.06.18

    CrossRef Google Scholar

    [56] 冉景, 王德建, 王灿, 等. 便携式X射线荧光光谱法与原子吸收/原子荧光法测定土壤重金属的对比研究[J]. 光谱学与光谱分析, 2014, 34(11): 3113−3118. doi: 10.3964/j.issn.1000-0593(2014)11-3113-06

    CrossRef Google Scholar

    Ran J, Wang D J, Wang C. Comparative study on the determination of heavy metals in soil by portable X-ray fluorescence spectrometry and atomic absorption/atomic fluorescence method[J]. Spectroscopy and Spectral Analysis, 2014, 34(11): 3113−3118. doi: 10.3964/j.issn.1000-0593(2014)11-3113-06

    CrossRef Google Scholar

    [57] 王清亚. 基于XRF的土壤重金属定量分析方法研究及应用[D]. 南昌: 东华理工大学, 2021.

    Google Scholar

    Wang Q Y. Research and application of quantitative analysis method of soil heavy metals based on XRF[D]. Nanchang: East China University of Technology, 2021.

    Google Scholar

    [58] Weindorf D C, Bakr N, Zhu Y, et al. Influence of ice on soil elemental characterization via portable X-ray fluorescence spectrometry[J]. Pedosphere, 2014, 24(1): 1−12. doi: 10.1016/S1002-0160(13)60076-4

    CrossRef Google Scholar

    [59] 赵合琴, 郑先君, 魏丽芳, 等. X射线荧光光谱分析中样品制备方法评述[J]. 河南化工, 2006(10): 8−11. doi: 10.3969/j.issn.1003-3467.2006.10.003

    CrossRef Google Scholar

    Zhao H Q, Zheng X J, Wei L F, et al. Review of sample preparation methods in X-ray fluorescence spectroscopy[J]. Henan Chemical Industry, 2006(10): 8−11. doi: 10.3969/j.issn.1003-3467.2006.10.003

    CrossRef Google Scholar

    [60] 李亚, 王英凯, 张旭, 等. X射线荧光光谱法测定高含量有机碳样品中的钾、钠、钙、镁、硅、铝、铁、钛、锰、磷[J]. 中国无机分析化学, 2021, 11(2): 57−61. doi: 10.3969/j.issn.2095-1035.2021.02.012

    CrossRef Google Scholar

    Li Y, Wang Y K, Zhang X, et al. Determination of potassium, sodium, calcium, magnesium, silicon, aluminum, iron, titanium, manganese and phosphorus in high organic carbon samples by X-ray fluorescence spectroscopy[J]. China Journal of Inorganic Analytical Chemistry, 2021, 11(2): 57−61. doi: 10.3969/j.issn.2095-1035.2021.02.012

    CrossRef Google Scholar

    [61] 胡明情. XRF法检测土壤重金属的影响因素[J]. 环境监控与预警, 2016, 8(2): 23−24, 27. doi: 10.3969/j.issn.1674-6732.2016.02.006

    CrossRef Google Scholar

    Hu M Q. Influencing factors of XRF detection of heavy metals in soil[J]. Environmental Monitoring and Early Warning, 2016, 8(2): 23−24, 27. doi: 10.3969/j.issn.1674-6732.2016.02.006

    CrossRef Google Scholar

    [62] Hu W, Huang B, Weindorf D C, et al. Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 92(4): 420−426. doi: 10.1007/s00128-014-1236-3

    CrossRef Google Scholar

    [63] Angeles-Chavez C, Antonio J, Antonia M. Chemical quantification of Mo-S, W-Si and Ti-V by energy dispersive X-ray spectroscopy[M]//Sharma S K. X-Ray Spectroscopy, 2012.

    Google Scholar

    [64] Newlander K, Goodale N, Jones G T, et al. Empirical study of the effect of count time on the precision and accuracy of pXRF data[J]. Journal of Archaeological Science, 2015, 3: 534−548. doi: 10.1016/j.jasrep.2015.07.007

    CrossRef Google Scholar

    [65] 王晔, 冷传旭, 潘增志, 等. 提高便携式XRF测定仪在土壤污染调查中使用效果的措施[J]. 化工管理, 2022(34): 71−73. doi: 10.19900/j.cnki.ISSN1008-4800.2022.34.022

    CrossRef Google Scholar

    Wang Y, Leng C X, Pan Z Z, et al. Measures to improve the use of portable XRF analyzers in soil pollution investigation[J]. Chemical Industry Management, 2022(34): 71−73. doi: 10.19900/j.cnki.ISSN1008-4800.2022.34.022

    CrossRef Google Scholar

    [66] 吴晓玲. XRF分析土壤重金属元素含量的方法研究[D]. 成都: 成都理工大学, 2016.

    Google Scholar

    Wu X L. XRF method for analysis of heavy metal content in soil[D]. Chengdu: Chengdu University of Technology, 2016.

    Google Scholar

    [67] 黄秋鑫, 孙秀敏. 粉末标准曲线XRF法检测土壤中的重/类金属[J]. 环境科学与技术, 2014, 37(9): 92−98. doi: 10.3969/j.issn.1003-6504.2014.09.018

    CrossRef Google Scholar

    Huang Q X, Sun X M. Detection of heavy/metalloids in soil by standard curve XRF of powder[J]. Environmental Science and Technology, 2014, 37(9): 92−98. doi: 10.3969/j.issn.1003-6504.2014.09.018

    CrossRef Google Scholar

    [68] 王世芳, 韩平, 王纪华, 等. X射线荧光光谱分析法在土壤重金属检测中的应用研究进展[J]. 食品安全质量检测学报, 2016, 7(11): 4394−4400. doi: 10.19812/j.cnki.jfsq11-5956/ts.2016.11.028

    CrossRef Google Scholar

    Wang S F, Han P, Wang J H, et al. Research progress on the application of X-ray fluorescence spectroscopy in the detection of heavy metals in soil[J]. Journal of Food Safety and Quality, 2016, 7(11): 4394−4400. doi: 10.19812/j.cnki.jfsq11-5956/ts.2016.11.028

    CrossRef Google Scholar

    [69] 章炜, 张玉钧, 陈东. 土壤重金属镍元素的X射线荧光定量分析[J]. 激光与光电子学进展, 2012, 49(1): 137−140. doi: 10.3788/LOP49.013002

    CrossRef Google Scholar

    Zhang Y, Zhang Y J, Chen D. X-ray fluorescence quantitative analysis of heavy metal nickel in soil[J]. Advances in Laser and Optoelectronics, 2012, 49(1): 137−140. doi: 10.3788/LOP49.013002

    CrossRef Google Scholar

    [70] Li F, Ge L, Tang Z, et al. Recent developments on XRF spectra evaluation[J]. Applied Spectroscopy Reviews, 2020, 55(4): 263−287. doi: 10.1080/05704928.2019.1580715

    CrossRef Google Scholar

    [71] López-Camacho E, García-Cortés A, Palacio C. A family of smoothing algorithms for electron and other spectroscopies based on the Chebyshev filter[J]. Thin Solid Films, 2006, 513(1−2): 72−77. doi: 10.1016/j.tsf.2006.01.024

    CrossRef Google Scholar

    [72] Wu X, Liu Z. A smoothing method for X-ray spectrum based on best beamforming[J]. Radiation Physics and Chemistry, 2012, 81(3): 248−252. doi: 10.1016/j.radphyschem.2011.11.048

    CrossRef Google Scholar

    [73] 杨帆, 王鹏, 张宁超, 等. 一种基于小波变换的改进滤波算法及其在光谱去噪方面的应用[J]. 国外电子测量技术, 2020, 39(8): 98−104. doi: 10.19652/j.cnki.femt.2002126

    CrossRef Google Scholar

    Yang F, Wang P, Zhang N C, et al. An improved filtering algorithm based on wavelet transform and its application in spectral denoising[J]. Foreign Electronic Measurement Technology, 2020, 39(8): 98−104. doi: 10.19652/j.cnki.femt.2002126

    CrossRef Google Scholar

    [74] 李芳. 基于小波变换的能量色散X射线荧光光谱建模方法研究[D]. 长春: 吉林大学, 2015.

    Google Scholar

    Li F. Research on modeling method of energy-dispersive X-ray fluorescence spectroscopy based on wavelet transform[D]. Changchun: Jilin University, 2015.

    Google Scholar

    [75] 黄素真, 宋晓梅, 任正伟. 基于双树复小波变换信号去噪算法研究[J]. 国外电子测量技术, 2017, 36(10): 19−22. doi: 10.3969/j.issn.1002-8978.2017.10.006

    CrossRef Google Scholar

    Huang S Z, Song X M, Ren Z W. Research on denoising algorithm for signal based on double-tree complex wavelet transform[J]. Foreign Electronic Measurement Technology, 2017, 36(10): 19−22. doi: 10.3969/j.issn.1002-8978.2017.10.006

    CrossRef Google Scholar

    [76] Lu B, Chen Y, Zhu Y, et al. An energy spectrum smoothing algorithm based on TCC-DEE[J]. Nuclear Science and Techniques, 2017, 28(10): 140. doi: 10.1007/s41365-017-0290-z

    CrossRef Google Scholar

    [77] 王卓, 葛良全, 张庆贤, 等. 基于傅里叶变换的本底扣除法在X荧光分析中的应用[J]. 核技术, 2012, 35(7): 549−551.

    Google Scholar

    Wang Z, Ge L Q, Zhang Q X, et al. Application of background subtraction method based on Fourier transform in X-ray fluorescence analysis[J]. Nuclear Techniques, 2012, 35(7): 549−551.

    Google Scholar

    [78] Hu Y, Zhou J, Tang J, et al. The application of complex wavelet transform to spectral signals background deduction[J]. Chromatographia, 2013, 76(11−12): 687−696. doi: 10.1007/s10337-013-2456-0

    CrossRef Google Scholar

    [79] Zhao F, Wang A. A background subtraction approach based on complex wavelet transforms in EDXRF: Background subtraction approach based on complex wavelet[J]. X-Ray Spectrometry, 2015, 44(2): 41−47. doi: 10.1002/xrs.2576

    CrossRef Google Scholar

    [80] Morháč M. An algorithm for determination of peak regions and baseline elimination in spectroscopic data[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600(2): 478−487. doi: 10.1016/j.nima.2008.11.132

    CrossRef Google Scholar

    [81] Jia L, Gu Y, Zhang Q, et al. The accuracy evaluation method of baseline estimation algorithms in energy dispersive X-ray fluorescence spectrum analysis[J]. X-Ray Spectrometry, 2023, 52(1): 22−27. doi: 10.1002/xrs.3180

    CrossRef Google Scholar

    [82] 王欣然. 基于XRF的土壤重金属元素检测分析方法研究[D]. 成都: 电子科技大学, 2023.

    Google Scholar

    Wang X R. Research on XRF-based analysis method for the detection of heavy metal elements in soil[D]. Chengdu: University of Electronic Science and Technology of China, 2023.

    Google Scholar

    [83] 刘峥莹. 土壤重金属XRF光谱重叠峰解析及含量预测模型研究[D]. 秦皇岛: 燕山大学, 2022.

    Google Scholar

    Liu Z Y. Analysis of overlapping peaks of soil heavy metal XRF spectra and content prediction model[D]. Qinhuangdao: Yanshan University, 2022.

    Google Scholar

    [84] 江晓宇, 李福生, 王清亚, 等. 便携式XRF分析仪检测土壤重金属应用研究[J]. 核电子学与探测技术, 2021, 41(6): 1005−1012. doi: 10.3969/j.issn.0258-0934.2021.06.015

    CrossRef Google Scholar

    Jiang X Y, Li F S, Wang Q Y, et al. Research on the application of portable XRF analyzer for the detection of heavy metals in soil[J]. Nuclear Electronics and Detection Technology, 2021, 41(6): 1005−1012. doi: 10.3969/j.issn.0258-0934.2021.06.015

    CrossRef Google Scholar

    [85] 程惠珠, 杨婉琪, 李福生, 等. 面向XRF的竞争性自适应重加权算法和粒子群优化的支持向量机定量分析研究[J]. 光谱学与光谱分析, 2023, 43(12): 3742−3746. doi: 10.3964/j.issn.1000-0593(2023)12-3742-05

    CrossRef Google Scholar

    Cheng H Z, Yang W Q, Li F S. Quantitative analysis of competitive adaptive reweighting algorithm and support vector machine for particle swarm optimization for XRF[J]. Spectroscopy and Spectral Analysis, 2023, 43(12): 3742−3746. doi: 10.3964/j.issn.1000-0593(2023)12-3742-05

    CrossRef Google Scholar

    [86] 黄启厅, 周炼清, 史舟, 等. FPXRF——偏最小二乘法定量分析土壤中的铅含量[J]. 光谱学与光谱分析, 2009, 29(5): 1434−1438. doi: 10.3964/j.issn.1000-0593(2009)05-1434-05

    CrossRef Google Scholar

    Huang Q T, Zhou L Q, Shi Z, et al. FPXRF: Partial least squares method for quantitative analysis of lead content in soil[J]. Spectroscopy and Spectral Analysis, 2009, 29(5): 1434−1438. doi: 10.3964/j.issn.1000-0593(2009)05-1434-05

    CrossRef Google Scholar

    [87] 杨惠. 基于XRF的土壤重金属CNN-ELM混合预测模型研究[D]. 秦皇岛: 燕山大学, 2021.

    Google Scholar

    Yang H. Research on CNN-ELM hybrid prediction model of soil heavy metals based on XRF[D]. Qinhuangdao: Yanshan University, 2021.

    Google Scholar

    [88] Kirsanov D, Panchuk V, Goydenko A, et al. Improving precision of X-ray fluorescence analysis of lanthanide mixtures using partial least squares regression[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 113: 126−131. doi: 10.1016/j.sab.2015.09.013

    CrossRef Google Scholar

    [89] Cheng S. Heavy metal pollution in China: Origin, pattern and control[J]. Environmental Science and Pollution Research, 2003, 10(3): 192−198. doi: 10.1065/espr2002.11.141.1

    CrossRef Google Scholar

    [90] Melquiades F L, dos Santos F R. Preliminary Results: Energy dispersive X-ray fluorescence and partial least squares regression for organic matter determination in soil[J]. Spectroscopy Letters, 2015, 48(4): 286−289. doi: 10.1080/00387010.2013.874532

    CrossRef Google Scholar

    [91] Morona F, dos Santos F R, Brinatti A M, et al. Quick analysis of organic matter in soil by energy-dispersive X-ray fluorescence and multivariate analysis[J]. Applied Radiation and Isotopes, 2017, 130: 13−20. doi: 10.1016/j.apradiso.2017.09.008

    CrossRef Google Scholar

    [92] John K, Kebonye N M, Agyeman P C, et al. Comparison of cubist models for soil organic carbon prediction via portable XRF measured data[J]. Environmental Monitoring and Assessment, 2021, 193(4): 1−15. doi: 10.1007/s10661-021-08946-x

    CrossRef Google Scholar

    [93] Zhu Y, Weindorf D C, Zhang W. Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture[J]. Geoderma, 2011.

    Google Scholar

    [94] Silva S H G, Weindorf D C, Pinto L C, et al. Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach[J]. Geoderma, 2020, 362: 114136. doi: 10.1016/j.geoderma.2019.114136

    CrossRef Google Scholar

    [95] Weindorf S. Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH)[J]. Geoderma, 2014, 232-234: 141−147. doi: 10.1016/j.geoderma.2014.05.005

    CrossRef Google Scholar

    [96] Teixeira A F D S, Pelegrino M H P, Faria W M. Tropical soil pH and sorption complex prediction via portable X-ray fluorescence spectrometry[J]. Geoderma, 2020, 361: 114132. doi: 10.1016/j.geoderma.2019.114132

    CrossRef Google Scholar

    [97] Pelegrino M H P, Silva S H G, de Faria Á J G, et al. Prediction of soil nutrient content via pXRF spectrometry and its spatial variation in a highly variable tropical area[J]. Precision Agriculture, 2022, 23(1): 18−34. doi: 10.1007/s11119-021-09825-8

    CrossRef Google Scholar

    [98] Andrade R, Silva S H G, Weindorf D C, et al. Micronutrients prediction via pXRF spectrometry in Brazil: Influence of weathering degree[J]. Geoderma Regional, 2021, 27: e00431. doi: 10.1016/j.geodrs.2021.e00431

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(2)

Article Metrics

Article views(744) PDF downloads(135) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint