2024 Vol. 44, No. 4
Article Contents

XU Kun, GUAN Xiner, LV Haozhe, ZHAO Xiao, Rezeye RUZI, CHEN Yanhong. Tectonic discrimination of oceanic basalt by machine learning[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 190-199. doi: 10.16562/j.cnki.0256-1492.2023041101
Citation: XU Kun, GUAN Xiner, LV Haozhe, ZHAO Xiao, Rezeye RUZI, CHEN Yanhong. Tectonic discrimination of oceanic basalt by machine learning[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 190-199. doi: 10.16562/j.cnki.0256-1492.2023041101

Tectonic discrimination of oceanic basalt by machine learning

More Information
  • The geochemical composition of basalt is closely related to the tectonic setting of the formation, thus basalt is an important window for viewing the deep Earth and the composition and geodynamic processes. To discriminate the tectonic setting of basalt formation, although a series of tectonic discrimination diagrams have been established based on the geochemical characteristics of basalt, those discrimination diagrams are limited to two-dimensional or three-dimensional data. With the explosive growth of global geochemical data of basalt, these discrimination diagrams show gradually the shortcomings of being local and inaccurate. Therefore, using machine learning methods is beneficial to analyze data multi-dimensionally and comprehensively, and to establish accurate and efficient discriminant models. A global modern oceanic basalt dataset was established by using GEOROC and PetDB databases through a series of steps from data downloading, training, and analyzing. The dataset was trained by the support vector machine (SVM) and random forest (RF) machine learning algorithms and a high-accuracy and high-dimensional discrimination model was built. In addition, the accuracies of different machine-learning algorithms training were analyzed against different geochemical composition datasets of modern oceanic basalt, and the discrimination models were applied to ophiolitic basalt to explore the application of machine learning models for ancient oceanic basalt. This work provided a higher-dimensional approach to discriminate oceanic basalt, and a successful attempt of using machine learning in earth science in the era of the big data.

  • 加载中
  • [1] White W M. Probing the Earth’s deep interior through geochemistry[J]. Geochemical Perspectives, 2015, 4(2):95-96.

    Google Scholar

    [2] Doucet L S, Tetley M G, Li Z X, et al. Geochemical fingerprinting of continental and oceanic basalts: A machine learning approach[J]. Earth-Science Reviews, 2022, 233:104192. doi: 10.1016/j.earscirev.2022.104192

    CrossRef Google Scholar

    [3] Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[M]//Hawkesworth C J, Norry M J. Continental Basalts and Mantle Xenoliths. Nantwich, Cheshire: Shiva Publications, 1983: 230-249.

    Google Scholar

    [4] Pearce J A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 2008, 100(1-4):14-48. doi: 10.1016/j.lithos.2007.06.016

    CrossRef Google Scholar

    [5] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50(1):11-30. doi: 10.1016/0012-821X(80)90116-8

    CrossRef Google Scholar

    [6] Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letters, 1982, 59(1):101-118. doi: 10.1016/0012-821X(82)90120-0

    CrossRef Google Scholar

    [7] Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[M]//Thorpe R S. Orogenic Andesites and Related Rocks. Chichester, England: John Wiley and Sons, 1982: 528-548.

    Google Scholar

    [8] Rollinson H, Pease V. Using Geochemical Data: To Understand Geological Processes[M]. 2nd ed. Cambridge: Cambridge University Press, 2021: 226-278.

    Google Scholar

    [9] 第鹏飞, 王金荣, 张旗, 等. 玄武岩构造环境判别图评估—全体数据研究的启示[J]. 矿物岩石地球化学通报, 2017, 36(6):891-896,879

    Google Scholar

    DI Pengfei, WANG Jinrong, ZHANG Qi, et al. The evaluation of basalt tectonic discrimination diagrams: Constraints on the research of global basalt data[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(6):891-896,879.]

    Google Scholar

    [10] Vermeesch P. Tectonic discrimination of basalts with classification trees[J]. Geochimica et Cosmochimica Acta, 2006, 70(7):1839-1848. doi: 10.1016/j.gca.2005.12.016

    CrossRef Google Scholar

    [11] 周永章, 王俊, 左仁广, 等. 地质领域机器学习、深度学习及实现语言[J]. 岩石学报, 2018, 34(11):3173-3178

    Google Scholar

    ZHOU Yongzhang, WANG Jun, ZUO Renguang, et al. Machine learning, deep learning and Python language in field of geology[J]. Acta Petrologica Sinica, 2018, 34(11):3173-3178.]

    Google Scholar

    [12] Bergen K J, Johnson P A, De Hoop M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363(6433):eaau0323. doi: 10.1126/science.aau0323

    CrossRef Google Scholar

    [13] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016

    Google Scholar

    ZHOU Zhihua. Machine Learning[M]. Beijing: Tsinghua University Press, 2016.]

    Google Scholar

    [14] 刘坤, 刘文波. 机器学习与大陆板内玄武岩构造环境判别[J]. 工程技术与管理, 2017, 1(2):188-191

    Google Scholar

    LIU Kun, LIU Wenbo. Machine learning and identification of the tectonic environment of basalt in the continental plate[J]. Engineering Technology & Management, 2017, 1(2):188-191.]

    Google Scholar

    [15] 焦守涛, 周永章, 张旗, 等. 基于GEOROC数据库的全球辉长岩大数据的大地构造环境智能判别研究[J]. 岩石学报, 2018, 34(11):3189-3194

    Google Scholar

    JIAO Shoutao, ZHOU Yongzhang, ZHANG Qi, et al. Study on intelligent discrimination of tectonic settings based on global gabbro data from GEOROC[J]. Acta Petrologica Sinica, 2018, 34(11):3189-3194.]

    Google Scholar

    [16] 任秋兵, 李明超, 李玉琼, 等. 基于全球橄榄石数据的玄武岩构造环境智能判别方法及其验证[J]. 大地构造与成矿学, 2020, 44(2):212-221

    Google Scholar

    REN Qiubing, LI Mingchao, LI Yuqiong, et al. An intelligent method for geochemical discrimination of tectonic settings of basalt based on olivine composition: GWO-SVM method and its verification[J]. Geotectonica et Metallogenia, 2020, 44(2):212-221.]

    Google Scholar

    [17] Guo P, Yang T, Xu W L, et al. Machine learning reveals source compositions of intraplate basaltic rocks[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(9):e2021GC009946. doi: 10.1029/2021GC009946

    CrossRef Google Scholar

    [18] 余星. 海底岩石地球化学研究中的"大数据": PetDB及其应用[J]. 地球科学进展, 2014, 29(2):306-314

    Google Scholar

    YU Xing. The big data tool for seabed petrogeochemistry research-PetDB and its application in geoscience[J]. Advances in Earth Science, 2014, 29(2):306-314.]

    Google Scholar

    [19] 葛粲, 汪方跃, 李永东, 等. 基于GEOROC大数据分析地壳厚度地球化学指标[J]. 岩石学报, 2018, 34(11):3179-3188

    Google Scholar

    GE Can, WANG Fangyue, LI Yongdong, et al. Analysis of geochemical indices of crustal thickness based on GEOROC big data[J]. Acta Petrologica Sinica, 2018, 34(11):3179-3188.]

    Google Scholar

    [20] 张晓琴, 程誉莹. 基于随机森林模型的成分数据缺失值填补法[J]. 应用概率统计, 2017, 33(1):102-110

    Google Scholar

    ZHANG Xiaoqin, CHENG Yuying. Imputation of missing values for compositional data based on random forest[J]. Chinese Journal of Applied Probability and Statistics, 2017, 33(1):102-110.]

    Google Scholar

    [21] 朱紫怡, 周飞, 王瑀, 等. 基于机器学习的锆石成因分类研究[J]. 地学前缘, 2022, 29(5):464-475

    Google Scholar

    ZHU Ziyi, ZHOU Fei, WANG Yu, et al. Machine learning-based approach for zircon classification and genesis determination[J]. Earth Science Frontiers, 2022, 29(5):464-475.]

    Google Scholar

    [22] Breiman L. Using iterated bagging to debias regressions[J]. Machine Learning, 2001, 45(3):261-277. doi: 10.1023/A:1017934522171

    CrossRef Google Scholar

    [23] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.

    Google Scholar

    [24] Pearce J A. Immobile element fingerprinting of ophiolites[J]. Elements, 2014, 10(2):101-108. doi: 10.2113/gselements.10.2.101

    CrossRef Google Scholar

    [25] Dai J G, Wang C S, Stern R J, et al. Forearc magmatic evolution during subduction initiation: Insights from an Early Cretaceous Tibetan ophiolite and comparison with the Izu-Bonin-Mariana forearc[J]. GSA Bulletin, 2021, 133(3-4):753-776. doi: 10.1130/B35644.1

    CrossRef Google Scholar

    [26] Clarke D B, Cameron B I, Muecke G K, et al. Early Tertiary basalts from the Labrador Sea floor and Davis Strait region[J]. Canadian Journal of Earth Sciences, 1989, 26(5):956-968. doi: 10.1139/e89-077

    CrossRef Google Scholar

    [27] Deng H, Peng S B, Polat A, et al. Neoproterozoic IAT intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton: evidence for evolving tectonic settings[J]. Precambrian Research, 2017, 289:75-94. doi: 10.1016/j.precamres.2016.12.003

    CrossRef Google Scholar

    [28] Güneş A, İlbeyli N, Rasimgil S, et al. Petrological and geochemical characteristics of the diabase and metasomatised dikes from the Tekirova ophiolite (SW Anatolia, Turkey): Tectonomagmatic evolution of the southern Neotethys[J]. Geochemistry, 2021, 81(3):125767. doi: 10.1016/j.chemer.2021.125767

    CrossRef Google Scholar

    [29] 熊庆. 蛇绿岩记录的大洋地幔内熔体迁移过程[J]. 矿物岩石地球化学通报, 2021, 40(5):999-1011 doi: 10.19658/j.issn.1007-2802.2021.40.043

    CrossRef Google Scholar

    XIONG Qing. Ophiolitic records of melt migration processes in oceanic mantle[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(5):999-1011.] doi: 10.19658/j.issn.1007-2802.2021.40.043

    CrossRef Google Scholar

    [30] 卢泓宇, 张敏, 刘奕群, 等. 卷积神经网络特征重要性分析及增强特征选择模型[J]. 软件学报, 2017, 28(11):2879-2890 doi: 10.13328/j.cnki.jos.005349

    CrossRef Google Scholar

    LU Hongyu, ZHANG Min, LIU Yiqun, et al. Convolution neural network feature importance analysis and feature selection enhanced model[J]. Journal of Software, 2017, 28(11):2879-2890.] doi: 10.13328/j.cnki.jos.005349

    CrossRef Google Scholar

    [31] 赵庆媛, 叶春茂, 鲁耀兵. 基于随机森林的微动特征重要性评估研究[J]. 现代防御技术, 2022, 50(4):124-131

    Google Scholar

    ZHAO Qingyuan, YE Chunmao, LU Yaobing. A micro-motion feature importance evaluation algorithm based on random forest[J]. Modern Defence Technology, 2022, 50(4):124-131.]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(4)

Article Metrics

Article views(493) PDF downloads(97) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint