2024 Vol. 44, No. 4
Article Contents

ZHANG Hangyu, WANG Xiaqing, HUANG Ping’an, WAN Dejun, LIU Fenggui, TANG Xiangling, ZHOU Kehan. Reliability assessment and calibration of elemental signal values by XRF core scanning in Qinghai Lake[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 200-211. doi: 10.16562/j.cnki.0256-1492.2023100101
Citation: ZHANG Hangyu, WANG Xiaqing, HUANG Ping’an, WAN Dejun, LIU Fenggui, TANG Xiangling, ZHOU Kehan. Reliability assessment and calibration of elemental signal values by XRF core scanning in Qinghai Lake[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 200-211. doi: 10.16562/j.cnki.0256-1492.2023100101

Reliability assessment and calibration of elemental signal values by XRF core scanning in Qinghai Lake

More Information
  • XRF core scanning has been extensively employed for semi-quantitative analysis of elements in various sediment types over the past three decades, particularly in lacustrine deposits due to its rapid, continuous, non-destructive, and high-resolution advantages. However, despite the susceptibility of element signal values obtained through XRF core scanning to instrument settings and core physical properties, there remains a scarcity of comprehensive evaluation regarding data reliability and calibration effects. In this study, a 2.39-m–long sedimentary core from Qinghai Hu (Lake) (QHH) was obtained for high-resolution scanning using an XRF core scanner. Physical and chemical characteristics in water content, grain size distribution, loss on ignition, and actual elemental composition were analyzed for each subsample. Moreover, the accuracy of element signal values and ratios by XRF core scanning and their influencing factors was effectively assessed, and the reliability of calibration results was simultaneously calibrated using internationally recognized models such as Normalized Median-scaled Calibration and Multivariate Log-ratio Calibration (MLC). Results demonstrate that the Zr signal values corresponded accurately to the actual contents in the sediment core sequence, while weak correlations were observed for Si and Ti, indicating their limited significance. Additionally, the presence of higher water content in the core sections significantly attenuated in signal intensity and fluctuation amplitude for elements of Al, Si, K, Ca, Ti, Fe and Mn. Reversely, dry core sections exhibited greater fluctuations in signals of above elements due to high-resolution scanning and variations in particle composition, thereby attenuating their correlations with actual concentrations. Trace elements of higher atomic weights, such as Rb, Sr, and Zr, demonstrated reduced susceptibility to the variations in water content and particle composition in terms of signal distributions. Finally, using the ratio between adjacent elements based on the XRF core scanning was proven a highly effective approach for quickly eliminating the consistent influence of multiple factors. Furthermore, the multivariate log-ratio calibration (MLC) model exhibited superior calibration effects on individual element signal values throughout the QHH core and within each core section. These findings not only offered valuable reference to the scientific application of high-resolution data acquired by XRF core scanning for lake sediments, but also established a foundation for the reconstruction of climate change and for comprehension of human-environment relationships in the northeastern Tibetan Plateau.

  • 加载中
  • [1] Rothwell R G, Croudace I W. Micro-XRF studies of sediment cores: a perspective on capability and application in the environmental sciences[M]//Croudace I W, Rothwell R G. Micro-XRF Studies of Sediment Cores: Applications of A Non-Destructive Tool for the Environmental Sciences. Dordrecht, The Netherlands: Springer, 2015: 1-21.

    Google Scholar

    [2] Hennekam R, de Lange G. X-ray fluorescence core scanning of wet marine sediments: methods to improve quality and reproducibility of high-resolution paleoenvironmental records[J]. Limnology and Oceanography:Methods, 2012, 10(12):991-1003. doi: 10.4319/lom.2012.10.991

    CrossRef Google Scholar

    [3] Nowaczyk N R, Liu J B, Plessen B, et al. A high-resolution paleosecular variation record for marine isotope stage 6 from Southeastern Black Sea sediments[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(3):e2020JB021350. doi: 10.1029/2020JB021350

    CrossRef Google Scholar

    [4] 杨涵菲, 赵艳, 崔巧玉, 等. 基于XRF岩芯扫描的Rb/Sr比值的古气候意义探讨: 以青藏高原东部若尔盖盆地为例[J]. 中国科学: 地球科学, 2021, 51(1): 73-91

    Google Scholar

    YANG Hanfei, ZHAO Yan, CUI Qiaoyu, et al. Paleoclimatic indication of X-ray fluorescence core-scanned Rb/Sr ratios: a case study in the Zoige Basin in the eastern Tibetan Plateau[J]. Science China Earth Sciences, 2021, 64(1): 80-95.]

    Google Scholar

    [5] Wang X Q, Wang Z S, Xiao J, et al. Soil erosion fluxes on the central Chinese Loess Plateau during CE 1811 to 1996 and the roles of monsoon storms and human activities[J]. CATENA, 2021, 200:105148. doi: 10.1016/j.catena.2021.105148

    CrossRef Google Scholar

    [6] Sun Y B, Clemens S C, Guo F, et al. High-sedimentation-rate loess records: a new window into understanding orbital- and millennial-scale monsoon variability[J]. Earth-Science Reviews, 2021, 220:103731. doi: 10.1016/j.earscirev.2021.103731

    CrossRef Google Scholar

    [7] 李东, 谭亮成, 郭飞, 等. Avaatech XRF岩芯扫描分析方法在石笋Sr/Ca测试中的应用[J]. 中国科学: 地球科学, 2019, 49(6): 1014-1023

    Google Scholar

    LI Dong, TAN Liangcheng, GUO Fei, et al. Application of Avaatech X-ray fluorescence core-scanning in Sr/Ca analysis of speleothems[J]. Science China Earth Sciences, 2019, 62(6): 964-973.]

    Google Scholar

    [8] Kern O A, Koutsodendris A, Mächtle B, et al. XRF core scanning yields reliable semiquantitative data on the elemental composition of highly organic-rich sediments: evidence from the Füramoos peat bog (southern Germany)[J]. Science of the Total Environment, 2019, 697:134110. doi: 10.1016/j.scitotenv.2019.134110

    CrossRef Google Scholar

    [9] Perez L, Crisci C, Lüning S, et al. Last millennium intensification of decadal and interannual river discharge cycles into the Southwestern Atlantic Ocean increases shelf productivity[J]. Global and Planetary Change, 2021, 196:103367. doi: 10.1016/j.gloplacha.2020.103367

    CrossRef Google Scholar

    [10] Croudace I W, Teasdale P A, Cundy A B. 200-year industrial archaeological record preserved in an Isle of Man saltmarsh sediment sequence: geochemical and radiochronological evidence[J]. Quaternary International, 2019, 514:195-203. doi: 10.1016/j.quaint.2018.09.045

    CrossRef Google Scholar

    [11] Roethlin R L, Gilli A, Wehrli B, et al. Tracking the legacy of early industrial activity in sediments of Lake Zurich, Switzerland: using a novel multi-proxy approach to find the source of extensive metal contamination[J]. Environmental Science and Pollution Research, 2022, 29(57):85789-85801. doi: 10.1007/s11356-022-21288-6

    CrossRef Google Scholar

    [12] Gardes T, Portet-Koltalo F, Debret M, et al. Historical and post-ban releases of organochlorine pesticides recorded in sediment deposits in an agricultural watershed, France[J]. Environmental Pollution, 2021, 288:117769. doi: 10.1016/j.envpol.2021.117769

    CrossRef Google Scholar

    [13] 黄平安, 王夏青, 唐湘玲, 等. X射线荧光光谱岩心扫描影响因素及校正方法的研究进展[J]. 物探与化探, 2023, 47(3):726-738

    Google Scholar

    HUANG Ping’an, WANG Xiaqing, TANG Xiangling, et al. Research progress in the influencing factors and correction methods of XRF-CS[J]. Geophysical and Geochemical Exploration, 2023, 47(3):726-738.]

    Google Scholar

    [14] 雷国良, 张虎才, 常凤琴, 等. 湖泊沉积物XRF元素连续扫描与常规ICP-OES分析结果的对比及校正: 以兹格塘错为例[J]. 湖泊科学, 2011, 23(2):287-294 doi: 10.18307/2011.0220

    CrossRef Google Scholar

    LEI Guoliang, ZHANG Hucai, CHANG Fengqin, et al. Comparison and correction of element measurements in lacustrine sediments using X-ray fluorescence core-scanning with ICP-OES method: a case study of Zigetang Co[J]. Journal of Lake Sciences, 2011, 23(2):287-294.] doi: 10.18307/2011.0220

    CrossRef Google Scholar

    [15] Liang L J, Sun Y B, Yao Z Q, et al. Evaluation of high-resolution elemental analyses of Chinese loess deposits measured by X-ray fluorescence core scanner[J]. CATENA, 2012, 92:75-82. doi: 10.1016/j.catena.2011.11.010

    CrossRef Google Scholar

    [16] 张晓楠, 张灿, 吴铎, 等. 基于XRF岩心扫描的中国西部湖泊沉积物元素地球化学特征[J]. 海洋地质与第四纪地质, 2015, 35(1):163-174

    Google Scholar

    ZHANG Xiaonan, ZHANG Can, WU Duo, et al. Element geochemistry of lake deposits measured by X-ray fluorescence core scanner in northwest China[J]. Marine Geology & Quaternary Geology, 2015, 35(1):163-174.]

    Google Scholar

    [17] Jarvis S, Croudace I W, Rothwell R G. Parameter optimisation for the ITRAX core scanner[M]//Croudace I W, Rothwell R G. Micro-XRF Studies of Sediment Cores: Applications of A Non-Destructive Tool for the Environmental Sciences. Dordrecht, The Netherlands: Springer, 2015: 535-562.

    Google Scholar

    [18] 成艾颖, 余俊清, 高春亮, 等. 湖泊沉积物微量元素ICP-AES与XRF分析方法和相关性研究[J]. 光谱学与光谱分析, 2013, 33(7):1949-1952

    Google Scholar

    CHENG Aiying, YU Junqing, GAO Chunliang, et al. Study on trace elements of lake sediments by ICP-AES and XRF core scanning[J]. Spectroscopy and Spectral Analysis, 2013, 33(7):1949-1952.]

    Google Scholar

    [19] 周锐, 李珍, 宋兵, 等. 长江三角洲平原湖沼沉积物XRF岩芯扫描结果的可靠性分析[J]. 第四纪研究, 2013, 33(4):697-704

    Google Scholar

    ZHOU Rui, LI Zhen, SONG Bing, et al. Reliability analysis of X-ray fluorescence core-scanning in the Yangtze River Delta limnetic sediments[J]. Quaternary Sciences, 2013, 33(4):697-704.]

    Google Scholar

    [20] Poto L, Gabrieli J, Crowhurst S, et al. Cross calibration between XRF and ICP-MS for high spatial resolution analysis of ombrotrophic peat cores for palaeoclimatic studies[J]. Analytical and Bioanalytical Chemistry, 2015, 407(2):379-385. doi: 10.1007/s00216-014-8289-3

    CrossRef Google Scholar

    [21] 吴兰军, 黎刚. XRF岩心扫描估算海洋沉积物有机碳含量的适用性[J]. 热带海洋学报, 2022, 41(2):112-120

    Google Scholar

    WU Lanjun, LI Gang. The estimation of organic contents in marine sediments based on bromine intensity by the XRF scanner[J]. Journal of Tropical Oceanography, 2022, 41(2):112-120.]

    Google Scholar

    [22] Tjallingii R, Röhl U, Kölling M, et al. Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(2):Q02004.

    Google Scholar

    [23] Wang X Q, Jin Z D, Zhang X B, et al. High-resolution geochemical records of deposition couplets in a palaeolandslide-dammed reservoir on the Chinese Loess Plateau and its implication for rainstorm erosion[J]. Journal of Soils and Sediments, 2018, 18(3):1147-1158. doi: 10.1007/s11368-017-1888-9

    CrossRef Google Scholar

    [24] Cuven S, Francus P, Lamoureux S F. Estimation of grain size variability with micro X-ray fluorescence in laminated lacustrine sediments, Cape Bounty, Canadian High Arctic[J]. Journal of Paleolimnology, 2010, 44(3):803-817. doi: 10.1007/s10933-010-9453-1

    CrossRef Google Scholar

    [25] Xue G, Cai Y J, Lu Y B, et al. Speleothem-based hydroclimate reconstructions during the penultimate deglaciation in northern China[J]. Paleoceanography and Paleoclimatology, 2021, 36(4):e2020PA004072. doi: 10.1029/2020PA004072

    CrossRef Google Scholar

    [26] Chawchai S, Kylander M E, Chabangborn A, et al. Testing commonly used X-ray fluorescence core scanning-based proxies for organic-rich lake sediments and peat[J]. Boreas, 2016, 45(1):180-189. doi: 10.1111/bor.12145

    CrossRef Google Scholar

    [27] Lyle M, Lyle A O, Gorgas T, et al. Data report: raw and normalized elemental data along the Site U1338 splice from X-ray fluorescence scanning[J]. Proceedings of the Integrated Ocean Drilling Program, 2012, 320-321:1-19.

    Google Scholar

    [28] Weltje G J, Bloemsma M R, Tjallingii R, et al. Prediction of geochemical composition from XRF core scanner data: a new multivariate approach including automatic selection of calibration samples and quantification of uncertainties[M]//Croudace I W, Rothwell R G. Micro-XRF Studies of Sediment Cores: Applications of A Non-Destructive Tool for the Environmental Sciences. Dordrecht, The Netherlands: Springer, 2015: 507-534.

    Google Scholar

    [29] Chen Q, Kissel C, Govin A, et al. Correction of interstitial water changes in calibration methods applied to XRF core-scanning major elements in long sediment cores: case study from the South China Sea[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(5):1925-1934. doi: 10.1002/2016GC006320

    CrossRef Google Scholar

    [30] 庞红丽, 高红山, 刘晓鹏, 等. 河流沉积物原位XRF岩芯扫描结果定量估算的初步研究[J]. 第四纪研究, 2016, 36(1):237-246

    Google Scholar

    PANG Hongli, GAO Hongshan, LIU Xiaopeng, et al. Preliminary study on calibration of X-ray fluorescence core scanner for quantitative element records in the Yellow River sediments[J]. Quaternary Sciences, 2016, 36(1):237-246.]

    Google Scholar

    [31] 张玉枝, 张家武, 毛春晖, 等. 湖泊沉积物含水量和结构对XRF扫描结果影响的评估及校正: 以西藏阿翁错为例[J]. 第四纪研究, 2020, 40(5):1145-1153

    Google Scholar

    ZHANG Yuzhi, ZHANG Jiawu, MAO Chunhui, et al. Accuracy assessment and calibration of the impact of water content and structure of lake sediments on the XRF scanning data: a case study of Aweng Co in the Tibetan Plateau[J]. Quaternary Sciences, 2020, 40(5):1145-1153.]

    Google Scholar

    [32] 张喜林, 范德江, 王亮, 等. X-射线岩心扫描系统对海洋沉积物成分测定质量的综合评价和校正[J]. 海洋学报, 2013, 35(6):86-95

    Google Scholar

    ZHANG Xilin, FAN Dejiang, WANG Liang, et al. The calibration and quality evaluation of elemental analysis results of marine sediment measured by an X-ray fluorescence core scanner[J]. Acta Oceanologica Sinica, 2013, 35(6):86-95.]

    Google Scholar

    [33] Xu F J, Hu B Q, Wang C, et al. Comparison and calibration of elemental measurements in sediments using X-Ray Fluorescence core scanning with ICP methods: a case study of the South China Sea deep Basin[J]. Journal of Ocean University of China, 2021, 20(4):848-856. doi: 10.1007/s11802-021-4554-1

    CrossRef Google Scholar

    [34] Yan D D, Wünnemann B, Hu Y B, et al. Wetland evolution in the Qinghai Lake area, China, in response to hydrodynamic and eolian processes during the past 1100 years[J]. Quaternary Science Reviews, 2017, 162:42-59. doi: 10.1016/j.quascirev.2017.02.027

    CrossRef Google Scholar

    [35] 金章东, 张飞, 王红丽, 等. 2005年以来青海湖水位持续回升的原因分析[J]. 地球环境学报, 2013, 4(3):1355-1362

    Google Scholar

    JIN Zhangdong, ZHANG Fei, WANG Hongli, et al. The reasons of rising water level in Lake Qinghai since 2005[J]. Journal of Earth Environment, 2013, 4(3):1355-1362.]

    Google Scholar

    [36] Lin P L, Du Z H, Wang L, et al. Hotspots of riverine greenhouse gas (CH4, CO2, N2O) emissions from Qinghai Lake Basin on the northeast Tibetan Plateau[J]. Science of the Total Environment, 2023, 857:159373. doi: 10.1016/j.scitotenv.2022.159373

    CrossRef Google Scholar

    [37] 徐海, 刘晓燕, 安芷生, 等. 青海湖现代沉积速率空间分布及沉积通量初步研究[J]. 科学通报, 2010, 55(4-5): 384-390

    Google Scholar

    XU Hai, LIU Xiaoyan, AN Zhisheng, et al. Spatial pattern of modern sedimentation rate of Qinghai lake and a preliminary estimate of the sediment flux[J]. Chinese Science Bulletin, 2010, 55(7): 621-627.]

    Google Scholar

    [38] 韩艳莉, 于德永, 陈克龙, 等. 2000—2018年青海湖流域气温和降水量变化趋势空间分布特征[J]. 干旱区地理, 2022, 45(4):999-1009

    Google Scholar

    HAN Yanli, YU Deyong, CHEN Kelong, et al. Spatial distribution characteristics of temperature and precipitation trend in Qinghai Lake Basin from 2000 to 2018[J]. Arid Land Geography, 2022, 45(4):999-1009.]

    Google Scholar

    [39] 李新新, 宋友桂. 伊犁尼勒克剖面烧失量变化特征及影响因素[J]. 海洋地质与第四纪地质, 2014, 34(5):127-135

    Google Scholar

    LI Xinxin, SONG Yougui. Variation in loss on ignition of the Nilka loess section in the Yili Basin and its impact factors[J]. Marine Geology & Quaternary Geology, 2014, 34(5):127-135.]

    Google Scholar

    [40] 王夏青, 彭保发, 李福春, 等. 黄土高原聚湫沉积旋回特征及地球化学划分[J]. 土壤, 2018, 50(5):1046-1054

    Google Scholar

    WANG Xiaqing, PENG Baofa, LI Fuchun, et al. Features and geochemical identification index of deposition couplets in landslide-dammed reservoirs on Loess Plateau of China[J]. Soils, 2018, 50(5):1046-1054.]

    Google Scholar

    [41] Jones A F, Macklin M G, Brewer P A. A geochemical record of flooding on the Upper River Severn, UK, during the last 3750 years[J]. Geomorphology, 2012, 179:89-105. doi: 10.1016/j.geomorph.2012.08.003

    CrossRef Google Scholar

    [42] MacLachlan S E, Hunt J E, Croudace I W. An empirical assessment of variable water content and grain-size on X-ray fluorescence core-scanning measurements of deep sea sediments[M]//Croudace I W, Rothwell R G. Micro-XRF Studies of Sediment Cores: Applications of A Non-Destructive Tool for the Environmental Sciences. Dordrecht, The Netherlands: Springer, 2015: 173-185.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(654) PDF downloads(47) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint