Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 No. 4
Article Contents

CHAO Qingyang, SHI Peiyang, LIU Yuzhe, LIU Chengjun. Effect of Mechanical Force on Activation Characteristics of a Low-grade Ascharite Ore[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 145-152, 210. doi: 10.3969/j.issn.1000-6532.2024.04.022
Citation: CHAO Qingyang, SHI Peiyang, LIU Yuzhe, LIU Chengjun. Effect of Mechanical Force on Activation Characteristics of a Low-grade Ascharite Ore[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 145-152, 210. doi: 10.3969/j.issn.1000-6532.2024.04.022

Effect of Mechanical Force on Activation Characteristics of a Low-grade Ascharite Ore

  • This is an article in the field of mining engineering. In this article, SEM-EDS, XRD, FT-IR, laser particle size analysis and other means were used to characterize the mechanical activation of boron and magnesium ore powder. The results show that the crystal structure of boraxite changes at the action of mechanical force from the regular and orderly crystal structure to the disorder of the amorphous structure. The particle size distribution of the ore powder is greatly affected by the mechanical force. At the experimental conditions of 200 r/min speed of the ball mill and the ratio of ball to material of 10∶1, the optimal activation time is 6 h, when the particle size of 90% of the ore powder is less than 21.5 μm. The activity of ascharite is related to the number of active bonds after activation. In a certain activation time, the activity of ascharite increases with increasing activation time, but the agglomeration of mineral powder particles at the action of van der Waals force for a long activation time leads to a decrease in activity. The mechanical activation pretreatment can reduce the dependence on sulfuric acid concentration and temperature in the leaching reaction of ascharite, and significantly improve the leaching rate of elements in ascharite. The experiments show that the leaching rate of ascharite after activation for 6 h is 50% higher than that of the raw ascharite under the condition of reaction temperature 25 ℃ and sulfuric acid concentration 1.48 mol/L. And amorphous SiO2 can be prepared at friendly conditions. The apparent activation energy decreases from 23.54 kJ/mol to 9.41 kJ/mol after activation. The diffusion of the solid product layer during the leaching process is the limiting link which affects the reaction of ascharite with sulfuric acid.

  • 加载中
  • [1] 王松, 赵元艺, 汪傲, 等. “一带一路”国家钾盐及硼资源分布规律与开采技术[J]. 地质通报, 2017, 36(1):35-49.WANG S, ZHAO Y Y, WANG A, et al. Distribution pattern of potash and boron resources and mining technology in “Belt and Road” countries[J]. Geological Bulletin, 2017, 36(1):35-49. doi: 10.3969/j.issn.1671-2552.2017.01.004

    CrossRef Google Scholar

    WANG S, ZHAO Y Y, WANG A, et al. Distribution pattern of potash and boron resources and mining technology in “Belt and Road” countries[J]. Geological Bulletin, 2017, 36(1):35-49. doi: 10.3969/j.issn.1671-2552.2017.01.004

    CrossRef Google Scholar

    [2] 李杰, 刘艳丽, 刘素兰, 等. 低品位硼镁矿制备硼酸及回收硫酸镁的研究[J]. 矿产综合利用, 2009(1):3-7.LI J, LIU Y L, LIU S L, et al. Preparation of boric acid and recovery of magnesium sulfate from low-grade boron and magnesium ores[J]. Multipurpose Utilization of Mineral Resources, 2009(1):3-7. doi: 10.3969/j.issn.1000-6532.2009.01.001

    CrossRef Google Scholar

    LI J, LIU Y L, LIU S L, et al. Preparation of boric acid and recovery of magnesium sulfate from low-grade boron and magnesium ores[J]. Multipurpose Utilization of Mineral Resources, 2009(1):3-7. doi: 10.3969/j.issn.1000-6532.2009.01.001

    CrossRef Google Scholar

    [3] 乌图那顺, 仲剑初, 何丹, 等. 高镁低品位硼镁矿的综合利用[J]. 化工矿物与加工, 2010, 39(5):8-11.UTU N S, ZHONG J C, HE D, et al. Comprehensive utilization of high-magnesium low-grade boromagnesite[J]. Chemical Minerals and Processing, 2010, 39(5):8-11. doi: 10.3969/j.issn.1008-7524.2010.05.003

    CrossRef Google Scholar

    UTU N S, ZHONG J C, HE D, et al. Comprehensive utilization of high-magnesium low-grade boromagnesite[J]. Chemical Minerals and Processing, 2010, 39(5):8-11. doi: 10.3969/j.issn.1008-7524.2010.05.003

    CrossRef Google Scholar

    [4] 刘璇, 李如燕, 崔孝炜, 等. 机械力对高硅钒尾矿活化性能的影响 [J]. 硅酸盐通报, 2019, 38(8): 2662-2668.LIU X , LI R Y, CUI X W, et al. Influence of mechanical force on activation properties of high silica vanadium tailings [J]. Silicate Bulletin, 2019, 38(8): 2662-7.

    Google Scholar

    LIU X , LI R Y, CUI X W, et al. Influence of mechanical force on activation properties of high silica vanadium tailings [J]. Silicate Bulletin, 2019, 38(8): 2662-7.

    Google Scholar

    [5] 李冷, 曾宪滨. 粉碎机械力化学的进展及其在材料开发中的应用 [J]. 武汉工业大学学报, 1993(1): 23-28.LI L, ZENG X B. Advances in pulverizing mechanical force chemistry and its application to materials development [J]. Journal of Wuhan University of Technology, 1993(1): 23-6.

    Google Scholar

    LI L, ZENG X B. Advances in pulverizing mechanical force chemistry and its application to materials development [J]. Journal of Wuhan University of Technology, 1993(1): 23-6.

    Google Scholar

    [6] FROST R L, SCHOLZ R, LóPEZ A, et al. The molecular structure of theborate mineral szaibelyite MgBO2(OH) – A vibrational spectroscopic study [J]. Journal of Molecular Structure, 2015, 1089(20-4.

    Google Scholar

    [7] 冯其明, 杨艳霞, 刘琨, 等. 纤蛇纹石纳米纤维的制备及表征[J]. 中南大学学报(自然科学版), 2006(6):1081-1086.FENG Q M, YANG Y X, LIU K, et al. Preparation and characterization of fibrous serpentine nanofibers[J]. Journal of Central South University (Natural Science Edition), 2006(6):1081-1086.

    Google Scholar

    FENG Q M, YANG Y X, LIU K, et al. Preparation and characterization of fibrous serpentine nanofibers[J]. Journal of Central South University (Natural Science Edition), 2006(6):1081-1086.

    Google Scholar

    [8] 李幼琴, 江绍英, 范文伟. 蛇纹石族矿物的红外光谱特征及其研究[J]. 地质科学, 1981(3):247-53.LI Y Q, JIANG S Y, FAN W W. Infrared spectral characteristics of serpentine minerals and their study[J]. Geoscience, 1981(3):247-53.

    Google Scholar

    LI Y Q, JIANG S Y, FAN W W. Infrared spectral characteristics of serpentine minerals and their study[J]. Geoscience, 1981(3):247-53.

    Google Scholar

    [9] 杨艳霞, 冯其明, 刘琨, 等. 纤蛇纹石的盐酸浸出及其动力学模型研究[J]. 材料导报, 2007(3):136-145.YANG Y X, FENG Q M, LIU K, et al. Hydrochloric acid leaching of fibrous serpentine and its kinetic modeling[J]. Materials Letters, 2007(3):136-145. doi: 10.3321/j.issn:1005-023X.2007.03.037

    CrossRef Google Scholar

    YANG Y X, FENG Q M, LIU K, et al. Hydrochloric acid leaching of fibrous serpentine and its kinetic modeling[J]. Materials Letters, 2007(3):136-145. doi: 10.3321/j.issn:1005-023X.2007.03.037

    CrossRef Google Scholar

    [10] 聂正林, 宋广翰, 孟雯, 等. 机械活化对废荧光粉中钇浸出动力学的影响[J]. 环境工程学报, 2019, 13(6):1 410-1416.NIE Z L, SONG G H, MENG W, et al. Effect of mechanical activation on the leaching kinetics of yttrium from waste phosphors[J]. Journal of Environmental Engineering, 2019, 13(6):1 410-1 416. doi: 10.12030/j.cjee.201810007

    CrossRef Google Scholar

    NIE Z L, SONG G H, MENG W, et al. Effect of mechanical activation on the leaching kinetics of yttrium from waste phosphors[J]. Journal of Environmental Engineering, 2019, 13(6):1 410-1 416. doi: 10.12030/j.cjee.201810007

    CrossRef Google Scholar

    [11] BEOLCHINI F, PAPINI M P, TORO L, et al. Acid leaching of manganiferous ores by sucrose: Kinetic modelling and related statistical analysis[J]. Minerals Engineering, 2001, 14(2):175-84. doi: 10.1016/S0892-6875(00)00173-4

    CrossRef Google Scholar

    [12] LIDDELL K C. Shrinking core models in hydrometallurgy: What students are not being told about the pseudo-steady approximation[J]. Hydrometallurgy, 2005, 79(1):62-68.

    Google Scholar

    [13] 赵青. 碱式硫酸铬清洁制备工艺的基础研究 [D]. 沈阳: 东北大学, 2015.ZHAO Q. Fundamental research on clean preparation process of basic chromium sulfate [D]. Shenyang: Northeastern University, 2015.

    Google Scholar

    ZHAO Q. Fundamental research on clean preparation process of basic chromium sulfate [D]. Shenyang: Northeastern University, 2015.

    Google Scholar

    [14] 王玲, 崔兆纯, 李存国, 等. 橄榄石常压硫酸溶解过程中镁的浸出动力学研究[J]. 矿产综合利用, 2020(5):186-190.WANG L, CUI Z C, LI C G, et al. Kinetics of magnesium leaching from olivine during sulfuric acid dissolution at atmospheric pressure[J]. Multipurpose Utilization of Mineral Resources, 2020(5):186-190. doi: 10.3969/j.issn.1000-6532.2020.05.029

    CrossRef Google Scholar

    WANG L, CUI Z C, LI C G, et al. Kinetics of magnesium leaching from olivine during sulfuric acid dissolution at atmospheric pressure[J]. Multipurpose Utilization of Mineral Resources, 2020(5):186-190. doi: 10.3969/j.issn.1000-6532.2020.05.029

    CrossRef Google Scholar

    [15] 张建树, 张荣, 毕继诚. CO2矿化反应基础研究Ⅰ. 镁橄榄石和蛇纹石盐酸浸出动力学研究[J]. 燃料化学学报, 2011, 39(9):706-11.ZHANG J S, ZHANG R, BI J C. Basic research on CO2 mineralization reaction Ⅰ. Kinetics of hydrochloric acid leaching of magnesium olivine and serpentine[J]. Journal of Fuel Chemistry, 2011, 39(9):706-11.

    Google Scholar

    ZHANG J S, ZHANG R, BI J C. Basic research on CO2 mineralization reaction Ⅰ. Kinetics of hydrochloric acid leaching of magnesium olivine and serpentine[J]. Journal of Fuel Chemistry, 2011, 39(9):706-11.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(392) PDF downloads(125) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint