Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 3
Article Contents

LV Haozi, WANG Chenghang, LI Qiang, HU Zhen, LI Bo. Experimental Study on Recovering Lepidolite from a Tailings in Jiangxi Province[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 89-94. doi: 10.13779/j.cnki.issn1001-0076.2024.03.009
Citation: LV Haozi, WANG Chenghang, LI Qiang, HU Zhen, LI Bo. Experimental Study on Recovering Lepidolite from a Tailings in Jiangxi Province[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 89-94. doi: 10.13779/j.cnki.issn1001-0076.2024.03.009

Experimental Study on Recovering Lepidolite from a Tailings in Jiangxi Province

More Information
  • Through research on process mineralogy and the recovery of lepidolite, an experimental study was conducted on the tailings from Jiangxi Province. The main elements and mineral composition of the sample were identified, and the occurrence states of Li2O−bearing minerals were determined. Tests were performed on grinding, desliming, and the dosages of lauryl amine, GY503, and sodium silicate. The results indicated that the Li2O grade of the sample was 0.276%, with the main valuable mineral being lepidolite (or lithian muscovite). Flotation condition tests showed that desliming improved flotation efficiency, and the suitable grinding fineness for the ore was 60% passing 0.074 mm. In roughing flotation, the optimal dosages of dodecyl amine, GY503, and sodium silicate were 200 g/t, 2000 g/t, and 500 g/t, respectively. The flotation closed−circuit test, consisting of one roughing, one cleaning, and two scavenging steps, yielded concentrates with a Li2O grade of 1.46% and a recovery of 82.81%. Furthermore, high−gradient magnetic separation further improved the quality of the lepidolite flotation concentrates, yielding a magnetic concentrate with a Li2O grade of 2.02% and a recovery of 40.71%. Thus, the effective utilization of the low−grade lepidolite ore was realized.

  • 加载中
  • [1] 魏江桥, 王安建, 马哲, 等. 锂资源全球治理体系历史演变、现实困境与中国参与策略[J]. 科技导报, 2024, 42(5): 81−91.

    Google Scholar

    WEI J Q, WANG A J, MA Z, et al. Historical evolution, current status, realistic challenges, and China's strategy of the global governance system of lithium resources[J]. Science & Technology Review, 2024, 42(5): 81−91.

    Google Scholar

    [2] MAISEL F, NEEF C, MARSCHEIDER−WEIDEMANN F, et al. A forecast on future raw material demand and recycling potential of lithium−ion batteries in electric vehicles[J]. Resources, Conservation and Recycling, 2023, 192: 106920. doi: 10.1016/j.resconrec.2023.106920

    CrossRef Google Scholar

    [3] MIATTO A, WOLFRAM P, RECK B K, et al. Uncertain future of American lithium: A perspective until 2050[J]. Environmental Science & Technology, 2021, 55(23): 16184−16194.

    Google Scholar

    [4] ZENG X L, LI J H. Implications for the carrying capacity of lithium reserve in China[J]. Resources, Conservation and Recycling, 2013, 80: 58−63. doi: 10.1016/j.resconrec.2013.08.003

    CrossRef Google Scholar

    [5] 成金华, 左芝鲤, 詹成, 等. 中国锂资源综合风险动态演变及预警研究[J]. 自然资源学报, 2024, 39(3): 528−546. doi: 10.31497/zrzyxb.20240303

    CrossRef Google Scholar

    CHENG J H, ZUO Z L, ZHAN C, et al. Toward the dynamic evolution and early warning of comprehensive risk in China’s lithium resources[J]. Journal of Natural Resources, 2024, 39(3): 528−546. doi: 10.31497/zrzyxb.20240303

    CrossRef Google Scholar

    [6] 廖秋敏, 孙明浩. “逆全球化”背景下中国锂资源供应安全评价[J]. 矿业研究与开发, 2022, 42(4): 179−186.

    Google Scholar

    LIAO Q M, SUN M H. Evaluation of China's lithium resource supply security under the background of “anti−globalization”[J]. Mining Research and Development, 2022, 42(4): 179−186.

    Google Scholar

    [7] 崔晓林. 中国锂矿资源需求预测及供需分析[D]. 北京: 中国地质大学(北京), 2017.

    Google Scholar

    CUI X L. China’s lithium ore resource demand forecast and supply and demand analysis[D]. Beijing: China University of Geosciences Beijing, 2017.

    Google Scholar

    [8] 王世一, 彭频. 基于物质流分析下的中国锂资源供应风险评估[J/OL]. 中国国土资源经济: 1−20 [2024−04−21]. https://doi.org/10.19676/j.cnki.1672−6995.001027.

    Google Scholar

    WANG S Y, PENG P. Risk assessment of lithium resource supply in China based on material flow analysis[J/OL]. Natural Resource Economics of China: 1−20 [2024−04−21]. https://doi.org/10.19676/j.cnki.1672−6995.001027.

    Google Scholar

    [9] 杨泓, 钟巍, 钟发平, 等. 锂云母提锂技术研究进展[J/OL]. 过程工程学报: 1−12[2024−05−22]. http://kns.cnki.net/kcms/detail/11.4541.TQ.20240430.1044.002.html.

    Google Scholar

    YANG H, ZHONG W, ZHONG F P, et al. Research progress of lithium extraction technology from lepidolite[J/OL]. The Chinese Journal of Process Engineering: 1−12 [2024−05−22]. http://kns.cnki.net/kcms/detail/11.4541.TQ.20240430.1044.002.html.

    Google Scholar

    [10] 张江峰. 锂辉石提锂技术发展现状[J]. 世界有色金属, 2020(18): 1−4. doi: 10.3969/j.issn.1002-5065.2020.18.001

    CrossRef Google Scholar

    ZHANG J F. Current status of lithium extraction technology from spodumene[J]. World Nonferrous Metals, 2020(18): 1−4. doi: 10.3969/j.issn.1002-5065.2020.18.001

    CrossRef Google Scholar

    [11] 肖仪武, 王臻, 冯凯, 等. 锂矿石基因特性及其对选矿的影响[J/OL]. 有色金属(选矿部分): 1−23[2024−04−21]. http://kns.cnki.net/kcms/detail/11.1840.TF.20240411.1436.002.html.

    Google Scholar

    XIAO Y W, WANG Z, FENG K, et al. Genetic characteristics of lithium ores and its influence on mineral beneficiation[J/OL]. Nonferrous Metals(Mineral Processing Section): 1−23 [2024−04−21]. http://kns.cnki.net/kcms/detail/11.1840.TF.20240411.1436.002.html.

    Google Scholar

    [12] 康敏, 吴天骄, 赵笑益, 等. 锂云母矿浸出液除钙、镁工艺研究[J]. 矿冶工程, 2023, 43(4): 135−138. doi: 10.3969/j.issn.0253-6099.2023.04.029

    CrossRef Google Scholar

    KANG M, WU T J, ZHAO X Y, et al. Removal of calcium and magnesium from leaching solution of lepidolite[J]. Mining and Metallurgical Engineering, 2023, 43(4): 135−138. doi: 10.3969/j.issn.0253-6099.2023.04.029

    CrossRef Google Scholar

    [13] SHA Y, DONG T, ZHAO Q, et al. A new strategy for enhancing the room temperature conductivity of solid−state electrolyte by using a polymeric ionic liquid[J]. Ionics, 2020, 26(10): 4803−4812.

    Google Scholar

    [14] ZHENG H, HUANG J, DONG T, et al. A novel strategy of lithium recycling from spent lithium−ion batteries using imidazolium ionic liquid[J]. Chinese Journal of Chemical Engineering. 2022, 41: 246−251.

    Google Scholar

    [15] XU X, CHEN Y, WAN P, et al. Extraction of lithium with functionalized lithium ion−sieves[J]. Progress in Materials Science. 2016: 276−313.

    Google Scholar

    [16] 楼法生, 徐喆, 黄贺, 等. 江西低品位超大型花岗岩云母型锂矿地质特征及找矿意义[J]. 东华理工大学学报(自然科学版), 2023, 46(5): 425−436.

    Google Scholar

    LOU F S, XU Z, HUAN G H, et al. Geological characteristics and prospecting significance of low grade super large granite mica−type lithium deposits in Jiangxi province[J]. Journal of East China University of Technology (Natural Science), 2023, 46(5): 425−436.

    Google Scholar

    [17] CBC−金属网−中国锂电网. 中国锂云母(Li2O: 1.5−2.0)价格行情Li2O: 1.5−2.0[EB/OL]. https://www.cbcie.com/104899/0/list.html.

    Google Scholar

    China Bulk Commodity−Metal−China Lithium Battery. China’s lepidolite (Li2O: 1.5−2.0) price market Li2O: 1.5−2.0[EB/OL]. https://www.cbcie.com/104899/0/list.html.

    Google Scholar

    [18] 谢黎明, 姚涛, 汪龙飞. 江西某含锂瓷石矿选矿试验研究[J]. 非金属矿, 2024, 47(1): 59−61+66.

    Google Scholar

    XIE L M, YAO T, WANG L F. Experimental study on beneficiation of a lithium−containing porcelain ore in Jiangxi[J]. Non−Metallic Mines, 2023, 46(5): 425−436.

    Google Scholar

    [19] 邹伟民, 梅晓方, 邱振忠, 等. 某锂云母粗精矿磁选再富集试验研究[J]. 现代矿业, 2024, 40(2): 176−178. doi: 10.3969/j.issn.1674-6082.2024.02.044

    CrossRef Google Scholar

    ZOU W M, MEI X F, QIU Z Z, et al. Experimental study on magnetic separation and re−enrichment of a lepidolite rough concentrate[J]. Modern Mining, 2024, 40(2): 176−178. doi: 10.3969/j.issn.1674-6082.2024.02.044

    CrossRef Google Scholar

    [20] 李杰, 孙大勇, 祁忠旭, 等. 内蒙古某低品位铷多金属矿选矿试验研究[J]. 矿业研究与开发, 2024, 44(1): 202−206.

    Google Scholar

    LI J, SUN D Y, QI Z X, et al. Experimental study on beneficiation of a low−grade rubidium polymetallic ore in Inner Mongolia[J]. Mining Research and Development, 2024, 44(1): 202−206.

    Google Scholar

    [21] 李洁, 黄小龙. 江西雅山花岗岩岩浆演化及其Ta−Nb富集机制[J]. 岩石学报, 2013, 29(12): 4311−4322.

    Google Scholar

    LI J, HUANG X L. Mechanism of Ta−Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province[J]. Acta Petrologica Sinica, 2013, 29(12): 4311−4322.

    Google Scholar

    [22] CUNEY M, MARIGNAC C, WEISBROD A. The Beauvoir topaz−lepidolite albite granite (Massif Central, France): The disseminated magmatic Sn−Li−Ta−Nb−Be mineralization[J]. Economic Geology, 1992, 87(7): 1766−1794. doi: 10.2113/gsecongeo.87.7.1766

    CrossRef Google Scholar

    [23] BREITER K, ĎURIŠOVÁ J, HRSTKA T, et al. Assessment of magmatic vs. metasomatic processes in rare−metal granites: a case study of the Cínovec/Zinnwald Sn−W−Li deposit, Central Europe[J]. Lithos, 2017, 292: 198−217.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views(329) PDF downloads(71) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint