Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 3
Article Contents

ZHANG Qin, MAO Song, HUANG Xiaofen, CHEN Aoao, ZHANG Wenbin. Research Progress in Surface Chemistry of Flotation for Apatite and Gangue Minerals in Phosphate Ore[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 1-15. doi: 10.13779/j.cnki.issn1001-0076.2024.03.001
Citation: ZHANG Qin, MAO Song, HUANG Xiaofen, CHEN Aoao, ZHANG Wenbin. Research Progress in Surface Chemistry of Flotation for Apatite and Gangue Minerals in Phosphate Ore[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 1-15. doi: 10.13779/j.cnki.issn1001-0076.2024.03.001

Research Progress in Surface Chemistry of Flotation for Apatite and Gangue Minerals in Phosphate Ore

More Information
  • Corresponding author: ZHANG Wenbin
  • Phosphate ore is a strategic key mineral resource. China's phosphate ore reserves rank second in the world, mainly consisting of sedimentary phosphate rocks. Due to the fact that phosphate rock is an accumulation formed by exogenesis, composed of cryptocrystalline or microcrystalline apatite and other gangue minerals, and the surface wettability, surface electrical properties, and surface adsorption of apatite and gangue minerals are similar, making flotation separation difficult. Surface chemistry of flotation is an important theoretical basis for the flotation of phosphate ores and the key to achieving selective separation between different minerals. This article provides an overview of the crystal chemical characteristics and the surface characteristics such as the surface wettability, the electrical properties, and adsorption characteristics of the main useful minerals in phosphate rock, including apatite and main gangue minerals such as dolomite and quartz. It also discussed the changing characteristics of surface wettability under different flotation agents, the double layer structure of minerals in aqueous solutions, the active sites on mineral surfaces, and the adsorption configuration of collectors. On this basis, the influence of unavoidable ions on the flotation behavior of apatite and gangue minerals was summarized. It is expected to provide the theoretical support for the flotation separation of Medium−low grade phosphate ore.

  • 加载中
  • [1] 何桂旭, 张覃. 氨基三亚甲基膦酸对氟磷灰石和白云石选择性抑制机理研究[J]. 化工矿物与加工, 2023, 52(11): 12−17.

    Google Scholar

    HE G X, ZHANG Q. Study on mechanism of selective inhibition of fluorapatite and dolomite by amino trimethylene phosphonic acid[J]. Industrial Minerals & Processing, 2023, 52(11): 12−17.

    Google Scholar

    [2] 李兵, 刘作华, 陶长元. 湿法磷酸绿色制造[M]. 重庆: 重庆大学出版社, 2019.

    Google Scholar

    LI B, LIU Z H, TAO C Y. Green manufacturing of wet−process phospphoric acid[M]. Chongqing: Chongqing University Press, 2019.

    Google Scholar

    [3] LAN S Z, SHEN P L, ZHENG Q F, et al. Effective flotation separation of apatite from dolomite using a new eco−friendly depressant gallic acid[J]. Green Chemistry, 2024, 26(3): 1627−1636. doi: 10.1039/D3GC03325B

    CrossRef Google Scholar

    [4] 韩豫川. 中国磷矿床[M]. 北京: 地质出版社, 2012.

    Google Scholar

    HAN Y C. Phosphate deposits of China[M]. Beijing: Geology Press, 2012.

    Google Scholar

    [5] ABOUZEID A Z M, NEGM A T, ELGILLANI D A. Upgrading of calcareous phosphate ores by flotation: Effect of ore characteristics[J]. International Journal of Mineral Processing, 2009, 90(1): 81−89.

    Google Scholar

    [6] 孙传尧. 选矿工程师手册(第4册)下卷: 选矿工业实践[M]. 北京: 冶金工业出版社, 2015.

    Google Scholar

    SUN C Y. Handbook for mineral processing engineers (Volume 4) Ⅱ: Mineral processing industrial practices[M]. Beijing: Metallurgical Industry Press, 2015.

    Google Scholar

    [7] 郑其, 张文彬. 用焙烧消化工艺处理碳酸盐磷矿[J]. 矿产综合利用, 1998(3): 5−9.

    Google Scholar

    ZHENG Q, ZHANG W B. The treatment of carbonate phosphate ores by roasting−slaking process[J]. Multipurpose Utilization of Mineral Resources, 1998(3): 5−9.

    Google Scholar

    [8] 胡为柏. 浮选[M]. 北京: 冶金工业出版社, 1983.

    Google Scholar

    HU W B. Flotation[M]. Beijing: Metallurgical Industry Press, 1983.

    Google Scholar

    [9] 赖亚, 何伯泉. 泡沫浮选表面化学[M]. 北京: 冶金工业出版社, 1987.

    Google Scholar

    LAI Y, HE B Q. Surface chemistry of froth flotation[M]. Beijing: Metallurgical Industry Press, 1987.

    Google Scholar

    [10] FUERSTENAU D W, 魏明安, 李长根. 浮选百年[J]. 国外金属矿选矿, 2001, 38(3): 2−9.

    Google Scholar

    FUERSTENAU D W, WEI M A, LI C G. A century of flotation[J]. Metallic Ore Dressing Abroad, 2001, 38(3): 2−9.

    Google Scholar

    [11] 系志编写组. 昆明理工大学资源开发工程系志[M]. 昆明: 昆明理工大学, 1999.

    Google Scholar

    COMPILING T. Department of resource development engineering, Kunming University of Science and Technology[M]. Kunming: Kunming University of Science and Technology, 1999.

    Google Scholar

    [12] 张文彬. 氧化铜矿浮选研究与实践[M]. 长沙: 中南工业大学出版社, 1992.

    Google Scholar

    ZHANG W B. Research and practice on flotation of oxidized copper ores[M]. Changsha: Central South University of Technology Press, 1992.

    Google Scholar

    [13] 张覃, 张文彬. 硫酸铵在孔雀石的黄药直接浮选中的相转移催化机理研究[J]. 昆明理工大学学报(理工版), 1997, 22(3): 15−18.

    Google Scholar

    ZHANG Q, ZHANG W B. Study on the phase transfer catalysis mechanism of ammonium sulfate in the direct flotation of pyrite in chalcopyrite[J]. Journal of Kunming University of Science and Technology (Engineering Edition), 1997, 22(3): 15−18.

    Google Scholar

    [14] 沈政昌, 罗世瑶, 杨义红, 等. 流态化浮选技术概述[J]. 有色金属(选矿部分), 2019(5): 20−26.

    Google Scholar

    SHEN Z C, LUO S Y, YANG Y H, et al. An overview of fluidized flotation technology[J]. Nonferrous Metals(Mineral Processing Section), 2019(5): 20−26.

    Google Scholar

    [15] FAN M M, TAO D, ZHAO Y M, et al. Effect of nanobubbles on the flotation of different sizes of coal particle[J]. Minerals & Metallurgical Processing, 2013, 30(3): 157−161.

    Google Scholar

    [16] 文书明. 浮选固液系统的热力学理论及应用[J]. 有色金属(选矿部分), 2024(4): 1−22.

    Google Scholar

    WEN S M. Thermodynamic theory of flotation solid−liquid systems and its application[J]. Nonferrous Metals(Mineral Processing Section), 2024(4): 1−22.

    Google Scholar

    [17] 刘炯天. 旋流—静态微泡柱分选方法及应用(之一) 柱分选技术与旋流—静态微泡柱分选方法[J]. 选煤技术, 2000(1): 42−44.

    Google Scholar

    LIU J T. Method and application of cyclone−static microbubble column separation (1) Column flotation technique and method of cyclone−static microbubble column separation[J]. Coal Preparation Technology, 2000(1): 42−44.

    Google Scholar

    [18] 赵丽娜, 陈傲傲, 张覃, 等. 微细粒磷灰石−白云石浮选体系中矿物疏水聚团行为及矿浆流变性研究[J]. 矿产保护与利用, 2022, 42(5): 104−111.

    Google Scholar

    ZHAO L N, CHEN A A, ZHANG Q, et al. Study on mineral hydrophobic agglomeration behavior and slurry rheology in microfine apatite−dolomite flotation system[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 104−111.

    Google Scholar

    [19] 刘邦瑞. 螯合浮选剂[M]. 北京: 冶金工业出版社, 1982.

    Google Scholar

    LIU B R. Chelating flotation reagents[M]. Beijing: Metallurgical Industry Press, 1982.

    Google Scholar

    [20] 桂夏辉, 邢耀文, 曹亦俊, 等. 低品质煤泥浮选过程强化研究进展及其思考[J]. 煤炭学报, 2021, 46(9): 2715−2732.

    Google Scholar

    GUI X H, XING Y W, CAO Y J, et al. Recent advances and thinking in process intensification of low quality coal slime flotation[J]. Journal of China Coal Society, 2021, 46(9): 2715−2732.

    Google Scholar

    [21] 邱冠周, 伍喜庆, 王毓华, 等. 近年浮选进展[J]. 金属矿山, 2006(1): 41−52.

    Google Scholar

    QIU G Z, WU X Q, WANG Y H, et al. Advance in flotation in recent years[J]. Metal Mine, 2006(1): 41−52.

    Google Scholar

    [22] 陈建华, 徐政和, 陈晔. 硫化矿物电子结构与表面密度泛函理论及在浮选中的应用(英文版)[M]. 长沙: 中南大学出版社, 2022.

    Google Scholar

    CHEN J H, XU Z H, CHEN Y. Electronic structure of sulfide minerals and density functional theory applied in flotation[M]. Changsha: Central South University Press, 2022.

    Google Scholar

    [23] 王杰, 张覃, 邱跃琴, 等. 方解石晶体结构及表面活性位点第一性原理[J]. 工程科学学报, 2017, 39(4): 487−493.

    Google Scholar

    WANG J, ZHANG Q, QIU Y Q, et al. The first principles of the crystal structure and active sites of calcite[J]. Journal of University of Science and Technology Beijing, 2017, 39(4): 487−493.

    Google Scholar

    [24] 王淀佐, 胡岳华. 浮选溶液化学[M]. 长沙: 湖南科学技术出版社, 1988.

    Google Scholar

    WANG D Z, HU Y H. Solution chemistry of flotation[M]. Changsha: Hunan Science and Technology Press, 1988.

    Google Scholar

    [25] 胡岳华, 王淀佐. 盐类矿物的溶解、表面性质变化与浮选分离控制设计[J]. 中南矿冶学院学报, 1992(3): 273−279.

    Google Scholar

    HU Y H, WANG D Z. Dissolution/surface property of salt−type minerals and design of schemes of flotation separation[J]. Journal of Central South Institute of Mining and Metallurgy, 1992(3): 273−279.

    Google Scholar

    [26] AMANKONAH J O, SOMASUNDARAN P, ANANTHAPADMABHAN K P. Effects of dissolved mineral species on the dissolution/ precipitation characteristics of calcite and apatite[J]. Colloids and Surfaces, 1985, 15(15): 295−307.

    Google Scholar

    [27] 张覃, 李显波, 卯松, 等. 分子模拟在磷矿浮选研究中的应用进展[J]. 矿业科学学报, 2023, 8(1): 102−114.

    Google Scholar

    ZHANG Q, LI X B, MAO S, et al. Application progress of molecular simulation in phosphate ore flotation[J]. 2023, 8(1): 102−114.

    Google Scholar

    [28] 王濮, 潘兆橹, 翁玲宝. 系统矿物学(下)[M]. 北京: 地质出版社, 1987.

    Google Scholar

    WANG P, PAN Z L, WENG L B. Systematic mineralogy (volume Ⅱ)[M]. Beijing: Geology Press, 1987.

    Google Scholar

    [29] 谢俊. 贵州织金磷块岩中稀土类质同象机理研究[D]. 贵阳: 贵州大学, 2020.

    Google Scholar

    XIE J. Research on the lsomorphism mechanism of rare earths in Zhijin phosphorite in Guizhou[D]. Guiyang: Guizhou University, 2020.

    Google Scholar

    [30] 黄小芬, 张覃. 胶磷矿晶体结构研究[J]. 矿物学报, 2011, 31(3): 566−570.

    Google Scholar

    HUANG X F, ZHANG Q. A study on crystal structure of collophanite[J]. Acta Mineralogica Sinica, 2011, 31(3): 566−570.

    Google Scholar

    [31] 卯松. 贵州织金磷矿稀土赋存状态及加工过程中稀土富集机理研究[D]. 贵阳: 贵州大学, 2023.

    Google Scholar

    MAO S. Occurrence state and enrichment mechanism of rare earth during processing of Zhijin phosphate ore in Guizhou, China[D]. Guiyang: Guizhou University, 2023.

    Google Scholar

    [32] CUI W Y, SONG X L, CHEN J H, et al. Adsorption behaviors of different water structures on the fluorapatite (001) surface: A DFT study[J]. Frontiers in Materials, 2020, 7: 1−8. doi: 10.3389/fmats.2020.00001

    CrossRef Google Scholar

    [33] XIE J, LI X H, MAO S, et al. Effects of structure of fatty acid collectors on the adsorption of fluorapatite (001) surface: A first−principles calculations[J]. Applied Surface Science, 2018, 444: 699−709. doi: 10.1016/j.apsusc.2018.03.105

    CrossRef Google Scholar

    [34] XIE J, ZHANG Q, MAO S, et al. Anisotropic crystal plane nature and wettability of fluorapatite[J]. Applied Surface Science, 2019, 493: 294−307. doi: 10.1016/j.apsusc.2019.06.195

    CrossRef Google Scholar

    [35] 王贤晨. 钙镁质磷矿石中矿物表面润湿性调控研究[D]. 贵阳: 贵州大学, 2020.

    Google Scholar

    WANG X C. Surface wettability regulation of minerals in flotation of calcium−magnesium phosphate ore[D]. Guiyang: Guizhou University, 2020.

    Google Scholar

    [36] 何婷, 张覃. 磷矿石中白云石晶体化学特性研究[J]. 矿冶工程, 2012, 32(5): 41−43.

    Google Scholar

    HE T, ZHANG Q. Study on crystal chemistry characteristics of dolomite in phosphate ores[J]. Mining and Metallurgical Engineering, 2012, 32(5): 41−43.

    Google Scholar

    [37] WANG X Y, LIU W G, DUAN H, et al. The adsorption mechanism of calcium ion on quartz (101) surface: A DFT study[J]. Powder Technology, 2018, 329: 158−166. doi: 10.1016/j.powtec.2018.01.086

    CrossRef Google Scholar

    [38] 王贤晨, 张覃, 陈建华, 等. 氟磷灰石与石英表面电子性质及胺类捕收剂吸附作用研究[J]. 贵州大学学报(自然科学版), 2017, 34(6): 21−28.

    Google Scholar

    WANG X C, ZHANG T, CHEN J H, et al. Electronic properties and amine collectors effect of fluorapatite and quartz surface[J]. Journal of Guizhou University(Natural Sciences), 2017, 34(6): 21−28.

    Google Scholar

    [39] GOUMANS T P M, WANDER A, BROWN W A, et al. Structure and stability of the (001) alpha−quartz surface[J]. Physical Chemistry Chemical Physics, 2007, 9(17): 2146−2152. doi: 10.1039/B701176H

    CrossRef Google Scholar

    [40] 孙传尧, 印万忠. 硅酸盐矿物浮选原理[M]. 北京: 科学出版社, 2001.

    Google Scholar

    SUN C Y, YIN W Z. Flotation principals of silicate minerals[M]. Beijing: Science Press, 2001.

    Google Scholar

    [41] KHOLODOV V N, NEDUMOV R I. The role of black shales in the formation of phosphate and manganese ores[J]. Lithology and Mineral Resources, 2011, 46(4): 321−352. doi: 10.1134/S0024490211040043

    CrossRef Google Scholar

    [42] 叶军建. 微细粒磷灰石浮选的界面调控研究[D]. 贵阳: 贵州大学, 2019.

    Google Scholar

    YE J J. Study on interfacial regulation of fine apatite flotation Summary[D]. Guiyang: Guizhou University, 2019.

    Google Scholar

    [43] HUANG X F, ZHANG Q. Interaction behavior between coarse and fine particles in the reverse flotation of fluorapatite and dolomite[J]. Langmuir, 2023, 39(36): 12931−12943. doi: 10.1021/acs.langmuir.3c02117

    CrossRef Google Scholar

    [44] 石天宇, 张覃. 新型捕收剂AY对胶磷矿与石英表面特性影响研究[J]. 矿冶工程, 2015, 35(6): 49−53.

    Google Scholar

    SHI T Y, ZHANG Q. Influence of collector AY on surface properties of collophane and quartz[J]. Mining and Metallurgical Engineering, 2015, 35(6): 49−53.

    Google Scholar

    [45] 杨婷婷, 李媛媛, 周瑞仙, 等. 基于动态俘泡法的胶磷矿与白云石表面润湿性研究[J]. 矿业研究与开发, 2020, 40(1): 113−118.

    Google Scholar

    YANG T T, LI Y Y, ZHOU R X, et al. Study on the surface wettability of collophanite and dolomite based on dynamic captive bubble method[J]. Mining Research and Development, 2020, 40(1): 113−118.

    Google Scholar

    [46] ZHANG J Q, LI H, CHAI Y, et al. Crystal properties and interaction with flotation reagent of fluorapatite and dolomite[J]. Minerals Engineering, 2023, 201: 108204. doi: 10.1016/j.mineng.2023.108204

    CrossRef Google Scholar

    [47] 余永富, 葛英勇, 潘昌林. 磷矿选矿进展及存在的问题[J]. 矿冶工程, 2008, 28(1): 29−33.

    Google Scholar

    YU Y F, GE Y Y, PAN C L. Progress and existing issues in phosphate ore beneficiation[J]. Mineral and Metallurgical Engineering, 2008, 28(1): 29−33.

    Google Scholar

    [48] 陈傲傲. 磷矿浮选体系中胶磷矿与白云石固液界面特性研究[D]. 贵阳: 贵州大学, 2023.

    Google Scholar

    CHEN A A. Solid−liquid interface characteristics of collophanite and dolomite in phosphate flotation system[D]. Guiyang: Guizhou University, 2023.

    Google Scholar

    [49] WANG X C, ZHANG Q. Insight into the influence of surface roughness on the wettability of apatite and dolomite[J]. Minerals, 2020, 10(2): 114. doi: 10.3390/min10020114

    CrossRef Google Scholar

    [50] AMIRECH A, BOUHENGUEL M, KOUACHI S. Two−stage reverse flotation process for removal of carbonates and silicates from phosphate ore using anionic and cationic collectors[J]. Arabian Journal of Geosciences, 2018, 11(19): 593. doi: 10.1007/s12517-018-3951-2

    CrossRef Google Scholar

    [51] PENG C S, SONG S X, LU S C. Determination of the solvation film thickness of dispersed particles with the method of Einstein viscosity equation[J]. Journal of University of Science and Technology Beijing, 2006, 12(4): 370−375.

    Google Scholar

    [52] 陈傲傲, 张覃. 胶磷矿与白云石界面水化特性的分子模拟研究[J]. 有色金属(选矿部分), 2024: 1−17.

    Google Scholar

    CHEN A A, ZHANG Q. Molecular simulation study on hydration characteristics of the interface between collophanite and dolomite[J]. 2024: 1−17.

    Google Scholar

    [53] 王旭明, 陆英. 表面分析技术新进展及在矿物工程研究中的应用−原子力显微镜[J]. 贵州大学学报(自然科学版), 2018, 35(6): 1−12.

    Google Scholar

    WANG X M, LU Y. New progress of surface analysis technology and its application in mineral engineering research: Atomic force microscopy[J]. Journal of Guizhou University(Natural Sciences), 2018, 35(6): 1−12.

    Google Scholar

    [54] CHEN A A, WANG X M, ZHANG Q. Interaction and inhibition mechanism of sulfuric acid with fluorapatite (001) surface and dolomite (104) surface: flotation experiments and molecular dynamics simulations[J]. Minerals, 2023, 13(12): 1517. doi: 10.3390/min13121517

    CrossRef Google Scholar

    [55] 刘润哲, 冯其明, 张国范, 等. 油酸钠和亚油酸钠与胶磷矿作用特性研究[J]. 非金属矿, 2018, 41(2): 55−57.

    Google Scholar

    LIU R Z, FENG Q M, ZHANG G F, et al. The studies of sodium oleate and sodium linoleate interaction characters on phosphate ores[J]. Non−Metallic Mines, 2018, 41(2): 55−57.

    Google Scholar

    [56] YAO J, YIN W, GONG E. Depressing effect of fine hydrophilic particles on magnesite reverse flotation[J]. International Journal of Mineral Processing, 2016, 149: 84−93. doi: 10.1016/j.minpro.2016.02.013

    CrossRef Google Scholar

    [57] HUANG X F, ZHANG Q. Depression mechanism of acid for flotation separation of fluorapatite and dolomite using ToF−SIMS and XPS[J]. Journal of Molecular Liquids, 2024, 394: 123584. doi: 10.1016/j.molliq.2023.123584

    CrossRef Google Scholar

    [58] YE J J, WANG X C, LI X B, et al. Effect of dispersants on dispersion stability of collophane and quartz fines in aqueous suspensions[J]. Journal of Dispersion Science and Technology, 2018, 39(11): 1655−1663. doi: 10.1080/01932691.2018.1461639

    CrossRef Google Scholar

    [59] 沈智慧. 贵州松桃微细粒锰矿矿物特性与强化分离机制研究[D]. 贵阳: 贵州大学, 2022.

    Google Scholar

    SHEN Z H. Study on mineral characteristics and enhanced separation mechanism of Songtao micro−fine manganese ore in Guizhou province[D]. Guiyang: Guizhou University, 2022.

    Google Scholar

    [60] LI X B, ZHANG Q, HOU B, et al. Flotation separation of quartz from collophane using an amine collector and its adsorption mechanisms[J]. Powder Technology, 2017, 318: 224−229. doi: 10.1016/j.powtec.2017.06.003

    CrossRef Google Scholar

    [61] 黄小芬. 磨矿环境对磷矿石中矿物表面性质的影响机制[D]. 贵阳: 贵州大学, 2024.

    Google Scholar

    HUANG X F. The influence mechanism of grinding environment on surface properties of minerals in phosphate ore[D]. Guiyang: Guizhou University, 2024.

    Google Scholar

    [62] DERQAOUI M, AARAB I, ABIDI A, et al. The effect of calcium ions on the flotation behavior of fluorapatite[J]. Mineral Processing and Extractive Metallurgy Review, 2022, 45(3): 173–182.

    Google Scholar

    [63] 高文鑫, 李显波. 溶解离子对白云石和氟磷灰石浮选及表面性质的影响研究[J]. 矿冶工程, 2023, 43(6): 79−82.

    Google Scholar

    GAO W X, LI X B. Effect of dissolved ions on flotation and surface properties of dolomite and fluorapatite[J]. Mining and Metallurgical Engineering, 2023, 43(6): 79−82.

    Google Scholar

    [64] CHEN J H, AO X Q, XIE Y, et al. Effects of iron ion dissolution and migration from phosphorite on the surface properties of dolomite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128618. doi: 10.1016/j.colsurfa.2022.128618

    CrossRef Google Scholar

    [65] FILIPPOVA I V, FILIPPOV L O, LAFHAJ Z, et al. Effect of calcium minerals reactivity on fatty acids adsorption and flotation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545: 157−166.

    Google Scholar

    [66] XU W, LIANG Q, TIAN Y, et al. Reverse anionic flotation of dolomitic collophanite using a mixed fatty acid collector: Adsorption behavior and mechanism[J]. Physicochemical Problems of Mineral Processing, 2022, 4(58): 151519.

    Google Scholar

    [67] KOWALCZUK P B. Flotation and hydrophobicity of quartz in the presence of hexylamine[J]. International Journal of Mineral Processing, 2015, 140: 66−71. doi: 10.1016/j.minpro.2015.05.002

    CrossRef Google Scholar

    [68] 宋水祥. 胺类捕收剂对赤铁矿和石英浮选行为及其泡沫稳定性的影响[D]. 昆明: 昆明理工大学, 2020.

    Google Scholar

    SONG S X. Effect of amine collectors on flotation behavior and foam stability of hematite and quartz[D]. Kunming: Kunming University of Science and Technology, 2020.

    Google Scholar

    [69] 邹志雄, 罗惠华, 汤家焰. 常见金属离子对白云母和石英浮选特性的影响[J]. 矿产保护与利用, 2018(1): 66−71.

    Google Scholar

    ZOU Z X, LUO H H, TANG J Y. Effect of common metal ions on the flotation performance of muscovite and quartz[J]. Conservation and Utilization of Mineral Resources, 2018(1): 66−71.

    Google Scholar

    [70] 潘志权, 沈博玮. 基于脂肪酸的磷矿捕收剂的研制与应用进展[J]. 武汉工程大学学报, 2016, 38(1): 1−9.

    Google Scholar

    PAN Z Q, SHEN B W. Research and application progress in flotation collectors based on fatty acids for phosphorus ores[J]. Journal of Wuhan Institute of Technology, 2016, 38(1): 1−9.

    Google Scholar

    [71] KANG Y T, ZHANG Q. The flotation separation of apatite from dolomite using a fatty acid−based collector and the mechanisms of adsorption[J]. Surface & Interface Analysis, 2023(2): 138−150.

    Google Scholar

    [72] 张景奇. 磷灰石和白云石表面捕收剂吸附机理研究[D]. 贵阳: 贵州大学, 2023.

    Google Scholar

    ZHANG J Q. Study on adsorption mechanism of apatite and dolomite surface collector[D]. Guiyang: Guizhou University, 2023.

    Google Scholar

    [73] RAO K H, ANTTI B, FORSSBERG E. Mechanism of oleate interaction on salt−type minerals, Part Ⅱ. Adsorption and electrokinetic studies of apatite in the presence of sodium oleate and sodium metasilicate[J]. International Journal of Mineral Processing, 1990, 28(1): 59−79.

    Google Scholar

    [74] 叶军建, 张覃, 侯波, 等. 显微−反射傅里叶变换红外光谱研究油酸钠与胶磷矿吸附机理[J]. 光谱学与光谱分析, 2018(10): 3036−3040.

    Google Scholar

    YE J J, ZHANG Q, HOU B, et al. Adsorption of oleate on collophane surface stydied by microscopic reflectance infrared fourier transfor spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018(10): 3036−3040.

    Google Scholar

    [75] CHENNAKESAVULU K, BHASKAR RAJU G, PRABHAKAR S, et al. Adsorption of oleate on fluorite surface as revealed by atomic force microscopy[J]. International Journal of Mineral Processing, 2009, 90(1): 101−104.

    Google Scholar

    [76] EL−MOFTY S, EL−MIDANY A. Calcite flotation in potassium oleate/potassium dihydrogen phosphate system[J]. Journal of Surfactants and Detergents, 2015, 18(5): 905−911. doi: 10.1007/s11743-015-1707-5

    CrossRef Google Scholar

    [77] YANG B, WANG D H, CAO S H, et al. Selective adsorption of a high−performance depressant onto dolomite causing effective flotation separation of magnesite from dolomite[J]. Journal of Colloid and Interface Science, 2020, 578: 290−303. doi: 10.1016/j.jcis.2020.05.100

    CrossRef Google Scholar

    [78] EL−MIDANY A A, EL−SHALL H E, SVORONOS S. Bubbles growth and their stability in reactive flotation process[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(11): 1534−1538.

    Google Scholar

    [79] 卯松, 章铁斌, 张覃. 阴离子对磷灰石和白云石表面性质影响的第一性原理研究[J]. 有色金属(选矿部分), 2022(5): 32−38.

    Google Scholar

    MAO S, ZHANG T B, ZHANG Q. First−principles study on the effect of anions on the surface properties of apatite and dolomite[J]. Nonferrous metals(Mineral Processing Section), 2022(5): 32−38.

    Google Scholar

    [80] ZHANG S D, DENG Z B, XIE X, et al. Study on the depression mechanism of calcium on the flotation of high−iron sphalerite under a high−alkalinity environment[J]. Minerals Engineering, 2021, 160: 106700. doi: 10.1016/j.mineng.2020.106700

    CrossRef Google Scholar

    [81] 王兢. 中低品位硅钙质沉积型磷块岩脱硅的浮选试验研究[D]. 贵阳: 贵州大学, 2005.

    Google Scholar

    WANG J. Flotation test study on desilicification of middle and low grade silica−calc sedimentary phosphorite[D]. Guiyang: Guizhou University, 2005.

    Google Scholar

    [82] FANG J, GE Y Y, YU J. Adsorption behavior and mechanism of an ether amine collector on collophane and quartz[J]. Physicochemical Problems of Mineral Processing, 2019, 55(1): 301−310.

    Google Scholar

    [83] 刘书杰, 何发钰. 磨矿环境对黄铁矿矿浆化学性质及浮选行为影响的研究[J]. 矿冶, 2008, 17(4): 6−10.

    Google Scholar

    LIU S J, HE F Y. Research on effect of grinding environment on pulp chemical property and flotation behavior of pyrite[J]. Miining and Metallurgy, 2008, 17(4): 6−10.

    Google Scholar

    [84] 马英强, 谢材, 李睿, 等. 难免离子与磨矿体系对硫化矿浮选影响的研究进展及展望[J]. 金属矿山, 2020(2): 33−38.

    Google Scholar

    MA Y Q, XIE C, LI R, et al. Research progress and prospect of the effect of unavoidable ions and grinding system on sulfide flotation system[J]. Metal Mine, 2020(2): 33−38.

    Google Scholar

    [85] 罗娜. 菱镁矿与白云石的浮选分离强化研究[D]. 沈阳: 东北大学, 2018.

    Google Scholar

    LUO N. Research on strengthening of flotation separation of magnesite and dolomite[D]. Shenyang: Northeastern University, 2018.

    Google Scholar

    [86] 刘润哲, 朱倪, 李若兰, 等. 碳酸盐型胶磷矿浮选体系中常见离子对胶磷矿和白云石浮选行为的影响[J]. 磷肥与复肥, 2024, 39(1): 16−19.

    Google Scholar

    LIU R Z, ZHU N, LI R L, et al. Effect of common ions on collophane and dolomite flotation in carbonate type collophane flotation system[J]. Phosphate & Compound Fertilizer, 2024, 39(1): 16−19.

    Google Scholar

    [87] 陈俊宏. 磷矿矿浆中金属离子的溶出和迁移对白云石表面性质的影响[D]. 贵阳: 贵州大学, 2022.

    Google Scholar

    CHEN J H. Influence of metal ion dissolution and migration in phosphate rock pulp on the surface properties of dolomite[D]. Guiyang: Guizhou University, 2022.

    Google Scholar

    [88] 李显波, 刘志红, 张小武, 等. 难免离子对中低品位钙镁质磷矿石反浮选的影响[J]. 武汉工程大学学报, 2017, 39(6): 550−556.

    Google Scholar

    LI X B, LIU Z H, ZHANG X W, et al. Effect of unavoidable ions on flotation of mid−low grade calcareous−magnesium phosphate ore[J]. Journal of Wuhan Institute of Technology, 2017, 39(6): 550−556.

    Google Scholar

    [89] RUAN Y Y, HE D S, CHI R. Review on beneficiation techniques and reagents used for phosphate ores[J]. Minerals, 2019, 9(4): 253. doi: 10.3390/min9040253

    CrossRef Google Scholar

    [90] 时景阳, 叶军建, 王贤晨, 等. 白云石表面溶出Ca2+、Mg2+对其可浮性的影响[J]. 矿产保护与利用, 2017(1): 40−45.

    Google Scholar

    SHI J Y, YE J J, WANG X C, et al. Influence of calcium and magnesium ions dissolved from dolomite surface on dolomite flotability[J]. Conservation and Utilization of Mineral Resources, 2017(1): 40−45.

    Google Scholar

    [91] 周兴杰, 梁欢, 朱倪, 等. 磷矿反浮选回水体系中难免离子对浮选行为的影响[J]. 矿产综合利用, 2024, 45(1): 160−166.

    Google Scholar

    ZHOU X J, LIANG H, ZHU N, et al. Effect of inevitable ions in phosphate reverse flotation return water systems on flotation behavior[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 160−166.

    Google Scholar

    [92] 黄小芬, 张覃. 钙镁离子对胶磷矿表面电性及可浮性的影响[J]. 矿物学报, 2013, 33(2): 185−188.

    Google Scholar

    HUANG X F, ZHANG Q. Effects of calcium and magnesium ions on the surface electrical properties and floatability of collophosphates[J]. Acta Mineralogica Sinica, 2013, 33(2): 185−188.

    Google Scholar

    [93] CHEN J H, YUAN X, YIN Y L, et al. Effect of Ca2+ dissolution and migration transformation from phosphorite on the surface properties of dolomite[J]. Minerals Engineering, 2022, 188: 107824. doi: 10.1016/j.mineng.2022.107824

    CrossRef Google Scholar

    [94] GAO W X, ZHANG Q, LI X B. Interaction of Ca2+, Mg2+ with dolomite (104) surface and its effect on caproic acid adsorption: DFT calculation[J]. Applied Surface Science, 2023, 614: 156244. doi: 10.1016/j.apsusc.2022.156244

    CrossRef Google Scholar

    [95] FARROKHPAY S, ZANIN M. An investigation into the effect of water quality on froth stability[J]. Advanced Powder Technology, 2012, 23(4): 493−497. doi: 10.1016/j.apt.2012.04.012

    CrossRef Google Scholar

    [96] 章铁斌, 刘文宝, 张覃. 钙镁离子对白云石浮选矿浆流变性的影响研究[J]. 贵州科学, 2024, 42(2): 74−77.

    Google Scholar

    ZHANG T B, LIU W B, ZHANG Q. Effect of calcium and magnesium ions on the rheological characteristics of dolomite pulp[J]. Guizhou Science, 2024, 42(2): 74−77.

    Google Scholar

    [97] 于润存, 仇向华. 选矿回水中钙镁离子对磷矿选矿的影响[J]. 金属材料与冶金工程, 2015, 43(5): 60−63.

    Google Scholar

    YU R C, CHOU X H. Effect of calcium and magnesium ions in mineral return water on phosphate ore dressing[J]. 2015, 43(5): 60−63.

    Google Scholar

    [98] 何晓太, 王杰, 崔伟勇, 等. 胶磷矿−白云石体系中离子的溶液化学行为研究[J]. 矿冶工程, 2015, 35(3): 55−57+62.

    Google Scholar

    HE X T, WANG J, CUI W Y, et al. Solution chemistry of dissolved ions in collophane−dolomite system[J]. Mining and Metallurgical Engineering, 2015, 35(3): 55−57+62.

    Google Scholar

    [99] LIU X, RUAN Y Y, LI C X, et al. Effect and mechanism of phosphoric acid in the apatite/dolomite flotation system[J]. International Journal of Mineral Processing, 2017, 167: 95−102. doi: 10.1016/j.minpro.2017.08.006

    CrossRef Google Scholar

    [100] YIN Y L, AO X Q, XIE Y, et al. Effects of dissolved fluoride in phosphate ore flotation systems on the surfaces properties of dolomite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653: 129922. doi: 10.1016/j.colsurfa.2022.129922

    CrossRef Google Scholar

    [101] DERHY M, TAHA Y, HAKKOU R, et al. Review of the main factors affecting the flotation of phosphate ores[J]. Minerals, 2020, 10(12): 1109. doi: 10.3390/min10121109

    CrossRef Google Scholar

    [102] 李冬莲, 张亚东. 钙镁离子对胶磷矿浮选影响的溶液化学分析[J]. 矿产保护与利用, 2013(4): 41−45.

    Google Scholar

    LI D L, ZHANG Y D. Solution chemistry analysis on effects of calcium and magnesium ions in cellophane flotation[J]. Conservation and Utilization of Mineral Resources, 2013(4): 41−45.

    Google Scholar

    [103] AARAB I, DERQAOUI M, EL AMARI K, et al. Influence of surface dissolution on reagents’ adsorption on low−grade phosphate ore and its flotation selectivity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631: 127700. doi: 10.1016/j.colsurfa.2021.127700

    CrossRef Google Scholar

    [104] 谢恒星. 无机调整剂碳酸钠和水玻璃对磷灰石分选特性的影响研究[J]. 中国矿业, 1998, 7(2): 56−59.

    Google Scholar

    XIE H X. Study on the effect of sodium carbonate and sodium silicate on the separation characteristics of apatite[J]. China Mining Magazine, 1998, 7(2): 56−59.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(1097) PDF downloads(72) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint