Citation: | WU Yu, ZHANG Ying, LI Xiaokang, GUAN Zhenhao, HE Qingrui. Advancements in Studying the Flocculation Flotation of Fine Minerals[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 16-26. doi: 10.13779/j.cnki.issn1001-0076.2024.03.002 |
The characteristics of mineral resources in our country are scarcity, fineness, and complexity, making the efficient recovery of fine particles particularly crucial. Flotation, as the main separation technology, analyzes the challenges in the flotation process of fine particles from the perspectives of fluid dynamics and surface chemistry. Fine particles, characterized by small mass, large specific surface area, and high surface energy, result in hydrophobic mineral grains moving along fluid streamlines during flotation, with low collision and attachment probabilities with air bubbles. Flocculation flotation, by increasing the apparent particle size of mineral particles, reduces the negative effects brought by the inherent characteristics of fine particles, serving as a significant direction for economically recovering fine particles. The paragraph comprehensively describes the advances in flocculation flotation theory, key factors influencing the process, and developments in shear flocculation and selective flocculation flotation. Furthermore, a comprehensive investigation into the flocculation performance of inorganic, organic, and microbial flocculants, along with their applications in flocculation flotation. It serves as a reference for gaining a detailed understanding of the intricate process of flocculation flotation.
[1] | 陈文胜, 付君浩, 韩海生, 等. 微细粒矿物分选技术研究进展[J]. 矿产保护与利用, 2020, 40(4): 134−145. CHEN W S, FU J H, HAN H S, et al. Research progress in the separation technology of fine minerals[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 134−145. |
[2] | MIETTINEN T, RALSTON J, FORNASIERO D. The limits of fine particle flotation[J]. Minerals Engineering, 2010(5): 420−437. |
[3] | WANG D, LIU Q. Hydrodynamics of froth flotation and its effects on fine and ultrafine mineral particle flotation: A literature review[J]. Minerals Engineering, 2021: 107220. DOI: 10.1016/j.mineng.2021.107220. |
[4] | SAJJAD M, OTSUKI A. Correlation between flotation and rheology of fine particle suspensions[J]. Metals, 2022(2): 270. |
[5] | 肖遥, 韩海生, 孙伟, 等. 微细粒浮选技术与装备研究进展及其发展趋势[J]. 中南大学学报(自然科学版), 2024(1): 20−31. XIAO Y, HAN H S, SUN W, et al. Research progress and development trend of fine flotation technology and equipment[J]. Journal of Central South University (Natural Science Edition), 2024(1): 20−31. |
[6] | DERJAGUIN B V, DUKHIN S S, RULYOV N N. Kinetic theory of flotation of small particles[J]. Surface and Colloid Science, 1984: 71−113. |
[7] | BILAL M A, PARK I, HORNN V, et al. The challenges and prospects of recovering fine copper sulfides from tailings using different flotation techniques: A review[J]. Minerals, 2022(5): 586. |
[8] | AKTAS Z Z E A, CILLIERS J J, BANFORD A W. Dynamic froth stability: Particle size, airflow rate and conditioning time effects[J]. International Journal of Mineral Processing, 2008(1/2): 65−71. |
[9] | 黄和慰. 微细粒矿物的浮选[J]. 金属矿山, 1987(10): 44−47. HUANG H W. Flotation of fine minerals[J]. Metal Mine, 1987(10): 44−47. |
[10] | 王瑞康, 蓝卓越, 封东霞, 等. 方铅矿与微细粒方解石在矿物浮选分离中的异相凝聚机理研究[J]. Journal of central south university, 2024(1): 127−137. WANG R K, LAN X Y, FENG D X, et al. Study on heterogeneous condensation mechanism of galena and fine calcite in mineral flotation separation[J]. Journal of Central South University, 2024(1): 127−137. |
[11] | 罗丽芳. 微细粒白钨矿选择性絮凝行为研究[D]. 赣州: 江西理工大学, 2019. LUO L F. Study on selective flocculation behavior of micro−fine scheelite[D]. Ganzhou: Jiangxi University of Science and Technology, 2019. |
[12] | 李小康, 张英, 管侦皓, 等. 微细粒白钨矿浮选研究进展[J]. 矿产保护与利用, 2023(2): 169−178. LI X K, ZHANG Y, GUAN Z H, et al. Research progress of fine scheelite flotation[J]. Conservation and Utilization of Mineral Resources, 2023(2): 169−178. |
[13] | FARROKHPAY S S F U, FILIPPOV L. Challenges in processing nickel laterite ores by flotation[J]. International Journal of Mineral Processing, 2016: 59−67. DOI: 10.1016/j.minpro.2016.04.007. |
[14] | ASGARI K, KHOSHDAST H. A review on floc−flotation of fine particles: technological aspects, mechanisms, and future perspectives[J]. Mineral Processing and Extractive Metallurgy Review, 2023: 1−28. DOI: 10.1080/08827508.2023.2236770. |
[15] | HYRYCZ M, OCHOWIAK M, KRUPIŃSKA A, et al. A review of flocculants as an efficient method for increasing the efficiency of municipal sludge dewatering: Mechanisms, performances, influencing factors and perspectives[J]. Science of the Total Environment, 2022: 153328. DOI: 10.1016/j.scitotenv.2022.153328. |
[16] | WU W, MA J, XU J, et al. Mechanistic insights into chemical conditioning by polyacrylamide with different charge densities and its impacts on sludge dewaterability[J]. Chemical Engineering Journal, 2021: 128425. DOI: 10.1016/j.cej.2021.128425. |
[17] | DWARI R K, ANGADI S I, TRIPATHY S K. Studies on flocculation characteristics of chromite’s ore process tailing: effect of flocculants ionicity and molecular mass[J]. Colloids & Surfaces A: Phys. Eng. Asp, 2018: 467−477. DOI: 10.1016/j.colsurfa.2017.10.069. |
[18] | WARREN L J. Shear−flocculation of ultrafine scheelite in sodium oleate solutions[J]. Journal of Colloid and Interface Science, 1975(2): 307−318. |
[19] | 刘清侠, 李明达, 郭蔚, 等. 微细粒疏水矿物表面微泡强化浮选的作用机理[J]. 中国矿业大学学报, 2022, 51(3): 466−474. doi: 10.3969/j.issn.1000-1964.2022.3.zgkydxxb202203007 LIU Q X, LI M D, GUO W, et al. Mechanism of enhanced flotation by microbubbles on the surface of fine hydrophobic minerals[J]. Journal of China University of Mining and Technology, 2022, 51(3): 466−474. doi: 10.3969/j.issn.1000-1964.2022.3.zgkydxxb202203007 |
[20] | 任浏祎, 肖丹丹, 覃文庆. 微细粒矿物浮选综述: 增大颗粒表观尺寸与减小气泡直径[J]. 矿产保护与利用, 2024, 44(1): 1−15. REN L W, XIAO D D, QIN W Q. Review on flotation of fine minerals: increasing apparent particle size and decreasing bubble diameter[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 1−15. |
[21] | A Ü A, B C H Y. Shear flocculation of chromite fines in sodium oleate solutions[J]. Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 1996(1): 87−93. |
[22] | JIN S, OU L. Comparison of the effects of sodium oleate and benzohydroxamic acid on fine scheelite and cassiterite hydrophobic flocculation[J]. Minerals, 2022(6): 687. |
[23] | 孟庆有, 袁致涛, 杨建超. 微细粒黑钨矿疏水絮凝浮选中聚团形成机制[J]. 东北大学学报(自然科学版), 2023, 44(7): 1002−1008. doi: 10.12068/j.issn.1005-3026.2023.07.012 MENG Q Y, YUAN Z T, YANG J H. Agglomeration formation mechanism in hydrophobic flocculation flotation of fine wolframite[J]. Journal of Northeastern University (Natural Science Edition), 2023, 44(7): 1002−1008. doi: 10.12068/j.issn.1005-3026.2023.07.012 |
[24] | WARREN L J. Flocculation of stirred suspensions of cassiterite and tourmaline[J]. Colloids and Surfaces, 1982(4): 301−319. |
[25] | M. M B, SHARAD M, PRAKASH T S. Advances in selective flocculation technology for solid −solid separations[J]. KONA, 1997: 5−20. DOI: 10.1016/S0301-7516(99)00072-1. |
[26] | 时景阳, 王建忠, 屈启龙, 等. 胶磷矿浮选体系中硅酸钠的分散机理及第一性原理分析[J]. 矿冶工程, 2022(1): 45−48. doi: 10.3969/j.issn.0253-6099.2022.01.010 SHI J Y, WANG J Z, QU Q L, et al. Dispersion mechanism and first principle analysis of sodium silicate in flotation system of collophanite[J]. Mining and Metallurgy Engineering, 2022(1): 45−48. doi: 10.3969/j.issn.0253-6099.2022.01.010 |
[27] | 汤家焰, 张静茹, 祝雯, 等. 硅酸钠对细粒萤石和石英的分散作用机理[J]. 矿冶工程, 2021(5): 63−67. doi: 10.3969/j.issn.0253-6099.2021.05.015 TANG J Y, ZHANG J R, ZHU W, et al. Dispersion mechanism of sodium silicate on fine fluorite and quartz[J]. Mining and Metallurgy Engineering, 2021(5): 63−67. doi: 10.3969/j.issn.0253-6099.2021.05.015 |
[28] | YEPSEN R, ROA J, TOLEDO P G, et al. Chalcopyrite and molybdenite flotation in seawater: The use of inorganic dispersants to reduce the depressing effects of micas[J]. Minerals, 2021(5): 539. |
[29] | LIANG L L, TAN J T, LI Z L, et al. Coal flotation improvement through hydrophobic flocculation induced by polyethylene oxide[J]. International Journal of Coal Preparation and Utilization, 2016(3): 139−150. |
[30] | PENG W, LIU S, HUANG Y, et al. A novel pH−responsive flocculant for efficient separation and recovery of Cu and Mo from secondary resources via selective flocculation−flotation[J]. Journal of Cleaner Production, 2023: 136463. DOI: 10.1016/j.jclepro.2023.136463. |
[31] | LI M, XIANG Y, CHEN T, et al. Separation of ultra−fine hematite and quartz particles using asynchronous flocculation flotation(Article)[J]. Minerals Engineering, 2021: 106817. DOI: 10.1016/j.mineng.2021.106817. |
[32] | KUMAR R, MANDRE N R. Characterization and beneficiation of iron ore tailings by selective flocculation[J]. Transactions of the Indian Institute of Metals, 2016(7): 1459−1466. |
[33] | LASKOWSKI J S, LIU Q, O'CONNOR C T. Current understanding of the mechanism of polysaccharide adsorption at the mineral/aqueous solution interface[J]. International Journal of Mineral Processing, 2008(1/4): 59−68. |
[34] | FENG B F B, PENG J P J, ZHU X Z X, et al. The settling behavior of quartz using chitosan as flocculant(Article)[J]. Journal of Materials Research and Technology, 2017(1): 71−76. |
[35] | LIANG L L, TAN J T, LI B L, et al. Reducing quartz entrainment in fine coal flotation by polyaluminum chloride[J]. Fuel, 2019: 150−157. DOI: 10.1016/j.fuel.2018.07.106. |
[36] | BEHL S, MOUDGIL B M. Control of active sites in selective flocculation: Ⅲ −− Mechanism of site blocking[J]. Journal of Colloid and Interface Science, 1993(2): 430−436. |
[37] | MOUDGIL B M, MATHUR S. Removal of dolomite and silica from apatite by selective flocculation[J]. Mining, Metallurgy & Exploration, 1994(4): 217−222. |
[38] | 王艳, 张亮亮. 絮凝法净化处理选矿废水的研究进展[J]. 大科技, 2022(40): 102−105. WANG Y, ZHANG L L. Research progress of flocculation purification and treatment of mineral processing wastewater[J]. China Science and Technology, 2022(40): 102−105. |
[39] | 马方通, 高利坤. 赤泥制备无机高分子絮凝剂的研究进展[J]. 化学世界, 2017, 58(6): 379−384. MA F T, GAO L K. Research progress on preparation of inorganic polymer flocculants from red mud[J]. Chemistry World, 2017, 58(6): 379−384. |
[40] | LI C A, XU M A, ZHANG H A Z C. Efficient separation of high−ash fine coal by the collaboration of nanobubbles and polyaluminum chloride[J]. Fuel, 2020: 116325. DOI: 10.1016/j.fuel.2019.116325. |
[41] | WANG C, WANG P, TAN X, et al. Selective aggregation of fine quartz by polyaluminum chloride to mitigate its entrainment during fine and ultrafine mineral flotation[J]. Separation & Purification Technology, 2021, 279: 119606. DOI: 10.1016/j.seppur.2021.119606. |
[42] | 高博, 刘新辉, 姚雷, 等. 淀粉接枝丙烯酰胺与聚丙烯酰胺对高岭土动态絮凝差异的研究[J]. 矿产保护与利用, 2024, 44(1): 24−32. GAO B, LIU X H, YAO L, et al. Study on the difference of dynamic flocculation of kaolin by starch grafted acrylamide and polyacrylamide[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 24−32. |
[43] | CHENG K, WU X, TANG H, et al. The flotation of fine hematite by selective flocculation using sodium polyacrylate[J]. Minerals Engineering, 2022: 107273. DOI: 10.1016/j.mineng.2021.107273. |
[44] | HUANG C H C, WANG Y W Y. Removal of aluminosilicates from diasporic−bauxite by selective flocculation using sodium polyacrylate[J]. Separation and Purification Technology, 2008(3): 299−303. |
[45] | 陈志强, 郑明宇, 彭铁锋. 聚丙烯酸钠对蛇纹石浮选的影响及其机理[J]. 矿产综合利用, 2022(2): 100−104. doi: 10.3969/j.issn.1000-6532.2022.02.018 CHEN Z Q, ZHENG M Y, PENG T F. Effect of sodium polyacrylate on serpentine flotation and its mechanism[J]. Comprehensive Utilization of Mineral Resources, 2022(2): 100−104. doi: 10.3969/j.issn.1000-6532.2022.02.018 |
[46] | 吴阳, 赵世永, 李博. 半焦选择性絮凝−浮选法脱灰实验研究[J]. 煤炭技术, 2017(4): 301−302. WU Y, ZHAO S Y, LI B. Experimental study on de−ashing of semi−coke by selective flocculation−flotation[J]. Coal Technology, 2017(4): 301−302. |
[47] | YIN Z G, KHOSO SULTAN AHMED, SUN W, et al. Treatment of flotation tailings by flocculation of polymeric organic matter and silica gel[J]. Journal of Central South University, 2018, 25(8): 1928−1937. doi: 10.1007/s11771-018-3883-8 |
[48] | WJ Z, L G, J H, et al. Adsorption of hydrophobically modified polyacrylamide P(AM−NaAA−C16DMAAC) on model coal and clay surfaces and the effect on selective flocculation of fine coal(Article)[J]. Minerals Engineering, 2019: 105887. DOI: 10.1016/j.mineng.2019.105887. |
[49] | 魏宗武, 高玚, 杨梅金, 等. 微细粒锡石的选择性絮凝浮选[J]. 矿业研究与开发, 2022, 42(1): 42−46. WEI Z W, GAO Y, YANG M J, et al. Selective flocculation flotation of fine cassiterite[J]. Mining Research and Development, 202, 42(1): 42−46. |
[50] | LI S, GAO L, WANG J, et al. Polyethylene oxide assisted separation of molybdenite from quartz by flotation(Article)[J]. Minerals Engineering, 2021: 106765. DOI: 10.1016/j.mineng.2020.106765. |
[51] | 王超. 类聚絮凝提高微细粒矿物浮选分离效率的基础研究[D]. 北京: 北京科技大学, 2022. WANG C. Basic research on Improvement of flotation separation efficiency of Micro−fine Minerals by similar flocculation[D]. Beijing: University of Science and Technology Beijing, 2022. |
[52] | NYSTRÖM R, BACKFOLK K, ROSENHOLM J B, et al. Flocculation of calcite dispersions induced by the adsorption of highly cationic starch[J]. Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 2003(1/2/3): 55. |
[53] | NANDA D, MANDRE N R. Performance evaluation of process variables for selective flocculation of iron fines using modified amphoteric starch through full factorial statistical analysis[J]. Journal of Sustainable Metallurgy, 2023(1): 123−131. |
[54] | HAO H, FAN G, YU J, et al. Adsorption changes of starch on minerals in carbonate−containing iron ore flotation by introducing amino radicals[J]. Journal OF Molecular Liquids, 2021, 343: 117511. DOI: 10.1016/j.molliq.2021.117511. |
[55] | HAO H, LI L, SOMASUNDARAN P, et al. Adsorption of pregelatinized starch for selective flocculation and flotation of fine siderite[J]. Langmuir, 2019, 35(21): 6878−6887. doi: 10.1021/acs.langmuir.9b00669 |
[56] | CHANDRAPRABHA M N, NATARAJAN K A. Microbially induced mineral beneficiation[J]. Mineral Processing and Extractive Metallurgy Review, 2010(1): 1−29. |
[57] | 肖国圣, 艾光华, 王雨桐. 微生物在矿物浮选中的研究进展与方向[J]. 有色金属(选矿部分), 2021(4): 26−31. XIAO G S, AI G H, WANG Y T. Research progress and direction of microorganisms in mineral flotation[J]. Nonferrous Metals (Mineral Processing Section), 2021(4): 26−31. |
[58] | PAWLOWSKA A, SADOWSKI Z. The Role of biomodification in mineral processing[J]. Minerals, 2023(10): 1246. |
[59] | KUNLE O, UCHECHUKWU U N, LEONARD V M, et al. Characterization of a bioflocculant (MBF−UFH) produced by bacillus sp. AEMREG7[J]. International Journal of Molecular Sciences [electronic resource], 2015(6): 12986−13003. |
[60] | 杨志超, 滕青, 祝瑄, 等. 多糖微生物絮凝剂对方解石与闪锌矿的絮凝作用及机理[J]. 金属矿山, 2021(10): 108−113. YANG Z C, TENG Q, ZHU X, et al. Flocculation and mechanism of polysaccharide microbial flocculant on calcite and sphalerite[J]. Metal Mine, 2021(10): 108−113. |
[61] | S. P, A. N K. Flocculation behaviour of hematite−kaolinite suspensions in presence of extracellular bacterial proteins and polysaccharides[J]. Colloids and Surfaces B: Biointerfaces, 2014: 186−192. DOI: 10.1016/j.colsurfb.2013.09.049. |
[62] | 卢瑶, 王立艳, 朱书全. 枯草芽孢杆菌对细粒煤的絮凝实验研究[J]. 煤炭加工与综合利用, 2011(5): 22−24. doi: 10.3969/j.issn.1005-8397.2011.05.008 LU Y, WANG L Y, ZHU S Q. Experimental study on flocculation of fine coal by bacillus subtilis[J]. Coal Processing and Comprehensive Utilization, 2011(5): 22−24. doi: 10.3969/j.issn.1005-8397.2011.05.008 |
[63] | U. P S, A. N K. Microbially induced separation of quartz from calcite using Saccharomyces cerevisiae[J]. Colloids and Surfaces B: Biointerfaces, 2011(1): 45−50. |
[64] | 陈雨佳, 罗琳, 毛石花, 等. 微生物诱导微细粒硫化矿的絮凝浮选工艺研究[J]. 环境科学与管理, 2012(7): 56−60. CHEN Y J, LUO L, MAO S H, et al. Study on flocculation flotation process of micro−fine sulfide ore induced by microorganisms[J]. Environmental Science and Management, 2012(7): 56−60. |
Schematic diagram of particle−bubble collision, attachment and separation (The red lines represent particle trajectories, while the black lines represent fluid flow lines)[7]
Flocculation through (a) charge neutralization, (b) metal ion bridging and (c) bridging[15]
Structure of glucose (a) and adsorption model of PS fragment on siderite (b) and hematite (c)[52]
Adsorption configuration of starch fragments on (a) siderite, (b) hematite and (c) quartz (Red—O; Gray—C; Purple—Fe; Yellow—Si; Blue—Water)[55]
Bacterial cells attached to mineral surfaces[58]