2024 Vol. 43, No. 6
Article Contents

WANG Yuxi, PU Wanfeng, LI Tongguo, YANG Tao, WANG Jun, LI Kangning, LIU Jingxian, YUAN Zhen. 2024. The main types of magmatism gold deposits and their mineralization in Gansu Province. Geological Bulletin of China, 43(6): 869-884. doi: 10.12097/gbc.2022.12.012
Citation: WANG Yuxi, PU Wanfeng, LI Tongguo, YANG Tao, WANG Jun, LI Kangning, LIU Jingxian, YUAN Zhen. 2024. The main types of magmatism gold deposits and their mineralization in Gansu Province. Geological Bulletin of China, 43(6): 869-884. doi: 10.12097/gbc.2022.12.012

The main types of magmatism gold deposits and their mineralization in Gansu Province

  • As one of the provinces with large gold resources, Gansu Province has various types of gold ore mineralization and complex metallage, among which magmatic metallogenic is one of the main metallogenic mechanisms of gold deposits, and the prospecting research idea of tectonic−magmatism-metallogenic is more suitable for magmatic gold deposits. The magmatic rock province of Gansu Province can be divided into 10 tectonic magmatic rock belts, which are mainly Beishan tectonic magmatic belt, Qinling−Dabie tectonic magmatic belt, Tarim tectonic magmatic belt, Qilian Mountain tectonic magmatic belt, Altyn tectonic magmatic belt, North Qinling tectonic magmatic belt, etc., these areas are also relatively concentrated areas of gold deposits, and the main types of magmatic gold deposits are magmatic deposits, contact metasomatic deposits, porphyry deposits, magmatic hydrothermal deposits and volcanic rock deposits. Combined with the division of tectonic magmatic rock belts and their main characteristics and the distribution of gold deposits in Gansu Province, this paper focuses on the analysis and study of the temporal and spatial distribution characteristics of magmatic gold deposits and magmatic rocks, the mineral-forming sources and physicochemical conditions of the main types of gold deposits in the Beishan tectonic magmatic belt and the Qinling−Dabie tectonic magmatic belt, summarizes the ore control factors, and proposes the main magmatic rock types, spatial ranges and technical methods that are conducive to gold prospecting.

  • 加载中
  • [1] Duuring P, Cassidy K F, Hagemann S G. 2007. Granitoid-associated orogenic, intrusion-related, and porphyry style metal deposits in the Archean Yilgarn Craton, Western Australia[J]. Ore Geology Reviews, 32: 157−186. doi: 10.1016/j.oregeorev.2006.11.001

    CrossRef Google Scholar

    [2] Faure Q. 1986. Principles of isotope geology (second edition) [M]. New York: John Wiley & Sons Press.

    Google Scholar

    [3] Han J S, Yao J M, Chen Y J. 2014. Geochronology and geochemistry of the Dashui adakitic granitoids in the western Qinling Orogen, central China: implications for Triassic tectonic setting[J]. Geological Journal, 49(4/5): 383−401.

    Google Scholar

    [4] Li N, Chen Y J, Fletcher I R, et al. 2011. Triassic mineralization with Cretaceous overprint in the Dahu Au−Mo deposit, Xiaoqinling gold province: Constraints from SHRIMP monazite U−Th−Pb geochronology[J]. Gondwana Research, 20: 543−552. doi: 10.1016/j.gr.2010.12.013

    CrossRef Google Scholar

    [5] Mao J W, Wang Y T, Li H M, et al. 2008. The relationship of mantle−derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D−O−C−S isotope systematics[J]. Ore Geology Reviews, 33: 361−381. doi: 10.1016/j.oregeorev.2007.01.003

    CrossRef Google Scholar

    [6] Mao S, Chen Y J, Zhou Z, et al. 2014. Zircon geochronology and Hf isotope geochemistry of the granitoids in the Yangshan gold field, western Qinling, China: implications for Petrogenesis, ore genesis and tectonic stting[J]. Geological Journal, 49(4/5): 359−382.

    Google Scholar

    [7] Meng Q R, Zhang G W. 1999. Timing of collision of the North and South China blocks: Controversy and reconciliation[J]. Geology, 27: 1−96.

    Google Scholar

    [8] Meng Q R, Zhang G W. 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China[J]. Tectonophysics, 323: 183−196. doi: 10.1016/S0040-1951(00)00106-2

    CrossRef Google Scholar

    [9] Pirajno F, Bagas L. 2008. A review of Australia's Proterozoic mineral systems and genetic models[J]. Precambrian Research, 166(1/4): 54−80.

    Google Scholar

    [10] Qin J F, Lai S C, Rodney G, et al. 2009. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China)[J]. Lithos, 112: 259−276. doi: 10.1016/j.lithos.2009.03.007

    CrossRef Google Scholar

    [11] Qiu Y M, Groves D I, McNaughton N J, et al. 2002. Nature, age, and tectonic setting of granitoid−hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China craton, China[J]. Mineralium Deposita, 37: 283−305. doi: 10.1007/s00126-001-0238-3

    CrossRef Google Scholar

    [12] Stacey J S, Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by a two−stage model[J]. Earth and Planetary Science Letters, 26: 207−221. doi: 10.1016/0012-821X(75)90088-6

    CrossRef Google Scholar

    [13] Sun W D, Li S G, Chen Y D, et al. 2002. Timing of synorogenic granotoids in the south Qinling, central China: Constraints on the evolution of the Qinling−Dabie Orogenic Belt[J]. Journal of Geology, 110: 457−468. doi: 10.1086/340632

    CrossRef Google Scholar

    [14] Wang Y X, Wang X W, Luo J M, et al. 2019. The quantitative classification of granites and their metallogenetic relations in West Qinling, Gansu Province, China[J]. Big Earth Data, 3(1): 56−66. doi: 10.1080/20964471.2019.1583054

    CrossRef Google Scholar

    [15] Yang T, Zhu L M, Zhang G W, et al. 2012. Geological and geochemical constraints on genesis of the Liziyuan gold−dominated polymetal deposit, western Qinling orogen, central China[J]. International Geology Review, 54(16): 1944−1966. doi: 10.1080/00206814.2012.704673

    CrossRef Google Scholar

    [16] Zeng Q T, McCuaig T C, Hart J R C, et al. 2012. Structural and geochronological studies on the Liba goldfield of the West Qinling Orogen, Central China[J]. Mineralium Deposita, 47(7): 799−819. doi: 10.1007/s00126-011-0398-8

    CrossRef Google Scholar

    [17] Zhang Y, Karrech A, Schaubs P M, et al. 2012. Modelling of deformation around magmatic intrusions with application to gold−related structures in the Yilgarn Craton, Western Australia[J]. Tectonophysics, 526: 133−146.

    Google Scholar

    [18] Zhu L M, Zhang G W, Ding Z J, et al. 2011. Zircon U−Pb ages and geochemistry of the Wenquan Mo−bearing granitioids in Western Qinling, China: Constraints on the geodynamic setting for the newly discovered Wenquan Mo deposit[J]. Ore Geology Review, 39: 46−62. doi: 10.1016/j.oregeorev.2010.10.001

    CrossRef Google Scholar

    [19] 安国堡. 2006. 甘肃北山拾金坡金矿床地质特征及成因分析[J]. 矿床地质, 25(4): 483−490. doi: 10.3969/j.issn.0258-7106.2006.04.013

    CrossRef Google Scholar

    [20] 陈富文, 李华芹, 蔡红, 等. 1999. 新疆东部金窝子金矿成因讨论-同位素地质年代学证据[J]. 地质论评, 45(3): 247−254. doi: 10.3321/j.issn:0371-5736.1999.03.004

    CrossRef Google Scholar

    [21] 陈祖伊, 张学权, 张昭明, 等. 1993. 北山区域地质发展史和金矿区域成矿模式[J]. 铀矿地质, 9(2): 65−75.

    Google Scholar

    [22] 崔惠文, 陈祖伊. 1996. 甘肃北山地区金矿地质[M]. 北京: 地质出版社: 1−20.

    Google Scholar

    [23] 冯建忠, 汪东波, 王学明, 等. 2003. 甘肃礼县李坝大型金矿床成矿地质特征及成因[J]. 矿床地质, 3: 257−263. doi: 10.3969/j.issn.0258-7106.2003.03.006

    CrossRef Google Scholar

    [24] 郭俊华, 齐金忠, 孙彬, 等. 2002. 甘肃阳山特大型金矿床地质特征及成因[J]. 黄金地质, 8(2): 15−19.

    Google Scholar

    [25] 胡霭琴, 张积斌. 1982. 据天山东段K−Ar年龄测定结果对天山地槽热历史的探讨[J]. 中国科学(B辑), 4(4): 345−353.

    Google Scholar

    [26] 胡霭琴, 张积斌, 刘菊英, 等. 1986. 天山东段中天山隆起带前寒武系变质时代及演化——据U−Pb年代学研究[J]. 地球化学, (l): 23−35.

    Google Scholar

    [27] 胡朋. 2007. 北山南带构造岩浆演化与金的成矿作用[D]. 中国地质科学院博士学位论文.

    Google Scholar

    [28] 江思宏, 聂凤军. 2006. 北山地区花岗岩类的40Ar/39Ar 同位素年代学研究[J]. 岩石学报, 22(11): 2719−2732.

    Google Scholar

    [29] 金维浚, 张旗, 何登发, 等. 2005. 西秦岭埃达克岩的SHRIMP定年及其构造意义[J]. 岩石学报, 21(3): 959−966. doi: 10.3321/j.issn:1000-0569.2005.03.033

    CrossRef Google Scholar

    [30] 李华芹, 陈富文, 蔡红, 等. 1999. 新疆东部马庄山金矿成矿作用同位素年代学研究[J]. 地质科学, 34(2): 251−256.

    Google Scholar

    [31] 李金祥, 邓军, 吴文根, 等. 2004. 山东招远金矿集中区矿床及围岩中硫和铅同位素的研究[J]. 现代地质, 18(2): 187−192. doi: 10.3969/j.issn.1000-8527.2004.02.007

    CrossRef Google Scholar

    [32] 李通国, 黄增宝, 甄红旭, 等. 2021. 中国矿产地质志甘肃卷金矿[M]. 北京: 地质出版社: 602−620.

    Google Scholar

    [33] 刘长江. 2016. 甘肃省肃北县金场沟金矿地质特征及找矿标志[J]. 甘肃科技, 31(20): 44−48.

    Google Scholar

    [34] 刘伟, 潘小菲. 2006. 新疆-甘肃北山金矿南带的成矿流体和成矿机制. 岩石学报, 22(1): 171−188.

    Google Scholar

    [35] 聂凤军, 江思宏, 赵省民, 等. 2000. 北山地区金矿床类型和生成演化[J]. 长春科技大学学报, 30(增刊): 21−26.

    Google Scholar

    [36] 聂凤军, 江思宏, 白大明, 等. 2002a. 北山地区金属矿床成矿规律及找矿方向[M]. 北京: 地质出版社.

    Google Scholar

    [37] 聂凤军, 江思宏, 赵省民, 等. 2002b. 北山地区照壁山金矿床地质特征及成因[J]. 地质科学, 37(2): 207−218.

    Google Scholar

    [38] 聂凤军, 江思宏, 白大明, 等. 2003. 北山中南带海西-印支期岩浆活动与金的成矿作用[J]. 地球学报, 24(5): 415−422. doi: 10.3321/j.issn:1006-3021.2003.05.004

    CrossRef Google Scholar

    [39] 潘小菲. 2006. 甘肃-新疆北山地区典型金矿床成矿流体及其成矿机制探讨[D]. 中国科学院研究生院博士学位论文.

    Google Scholar

    [40] 邵世才, 汪东波. 2001. 南秦岭三个典型金矿床的Ar−Ar年代及其地质意义[J]. 地质学报, 75: 106−110. doi: 10.3321/j.issn:0001-5717.2001.01.012

    CrossRef Google Scholar

    [41] 汤中立. 1996. 中国岩浆硫化物矿床的主要成矿机制[J]. 地质学报, 70(3): 237−243.

    Google Scholar

    [42] 汤中立, 巴恩斯. 1998. 岩浆硫化物矿床成矿机制[M]. 北京: 地质出版社: 1−150.

    Google Scholar

    [43] 王琦. 2006. 甘肃北山拾金坡金矿床矿物学特征[J]. 甘肃科技, 22(6): 85−89. doi: 10.3969/j.issn.1000-0952.2006.06.034

    CrossRef Google Scholar

    [44] 王玉玺, 曹海龙, 刘杰. 2012. 甘肃北山地区拾金坡式岩浆热液型金矿成矿模式建立[J]. 甘肃地质, 21(1): 12−18.

    Google Scholar

    [45] 王玉玺, 张渊, 张丹青, 等. 2019. 北山拾金坡−金场沟金成矿带岩浆热液型金矿区域成矿模式的建立[J]. 甘肃地质, 28(1/2): 16−23.

    Google Scholar

    [46] 闫海卿, 贺宝林, 刘巧峰, 等. 2014. 西秦岭大水金矿岩浆岩年代学、地球化学特征[J]. 地球科学与环境学报, 36(1): 98−110.

    Google Scholar

    [47] 殷先明, 杜玉良, 殷勇. 2005. 甘肃花岗岩类成矿作用研究与找矿方向[J]. 西北地质, 38(4): 26−31. doi: 10.3969/j.issn.1009-6248.2005.04.005

    CrossRef Google Scholar

    [48] 殷勇, 殷先明. 2009. 西秦岭北缘与埃达克岩和喜马拉雅型花岗岩有关的斑岩型铜-钼-金成矿作用[J]. 岩石学报, 25(5): 1239−1252.

    Google Scholar

    [49] 殷勇. 2011. 西秦岭地区脉岩与金矿化的关系[J]. 甘肃地质, 20(1): 28−51.

    Google Scholar

    [50] 袁见齐, 朱上庆, 翟裕生. 1985. 矿床学[M]. 北京: 地质出版社.

    Google Scholar

    [51] 曾长华, 吴大江, 夏文彬, 等. 2002. 北山成矿带金矿成矿规律与远景[J]. 新疆地质, 20(3): 219−223. doi: 10.3969/j.issn.1000-8845.2002.03.009

    CrossRef Google Scholar

    [52] 张帆, 刘树文, 李秋根, 等. 2009. 秦岭西坝花岗岩LA−ICP−MS 锆石U−Pb年代学及其地质意义[J]. 北京大学学报(自然科学版), 45(5): 833−840.

    Google Scholar

    [53] 张国伟, 张本仁, 袁学诚, 等. 2001. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 1−855.

    Google Scholar

    [54] 张旗, 殷先明, 殷勇, 等. 2009, 西秦岭与埃达克和喜马拉雅型花岗岩有关的金铜成矿及找矿问题[J]. 岩石学报, 25(12): 3103−3122.

    Google Scholar

    [55] 张旗, 金维浚, 李承东, 等. 2015. 利用镜质体反射率方法寻找隐伏岩体——岩浆热场应用的一个实例[J]. 大地构造与成矿学, 39(6): 1094−1107.

    Google Scholar

    [56] 张翔, 戴霜, 刘建宏, 等. 2017. 甘肃西秦岭金矿成矿与找矿研究[M]. 北京: 地质出版社.

    Google Scholar

    [57] 张翔, 戴霜, 黄万堂, 等. 2019. 甘肃省玛曲县大水金矿原生金矿石的发现及意义[J]. 地质与勘探, 55(2): 484−495. doi: 10.12134/j.dzykt.2019.02.004

    CrossRef Google Scholar

    [58] 张新虎, 刘建宏, 梁明宏, 等. 2013. 甘肃省区域成矿与找矿[M]. 北京: 地质出版社: 214−371.

    Google Scholar

    [59] 郑永飞, 陈江峰. 2000. 稳定同位素地球化学[M]. 北京: 科学出版社.

    Google Scholar

    [60] 朱赖民, 丁振举, 姚书振, 等. 2009. 西秦岭甘肃温泉钼矿床成矿地质事件及其成矿构造背景[J]. 科学通报, 54(16): 2337−2347.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(1)

Article Metrics

Article views(988) PDF downloads(82) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint