Citation: | LIU Baoshan, ZHANG Chunpeng, KOU Linlin, LI Chenglu, HAN Renping, WANG Yuli, YANG Hongzhi. 2024. The age of ductile shear deformation and its constraint on Cu mineralization transformation in Duobaoshan Cu deposit, Heilongjiang Province. Geological Bulletin of China, 43(6): 885-895. doi: 10.12097/gbc.2022.04.032 |
The Duobaoshan porphyry Cu deposit is mainly found in Ordovician granodiorite, with minor occurrences in Ordovician granodiorite porphyry and andesite of the Duobaoshan Formation. The copper mineralization is primarily disseminated and levee−disseminated. The metallogenic process encompasses a porphyry stage and a shear deformation stage. A ductile shear deformation zone exists in the mining area, involving the Duobaoshan Formation, granodiorite, granodiorite porphyry, andesitic tuff breccia, and ore bodies. New sericite minerals develop along the shear plane. The plateau age, isochron ages and inverse isochron ages of sericite are 280.1± 1.2 Ma, 281.4 ± 1.3 Ma, and 281.3± 1.3 Ma, respectively, which are consistent within error ranges. The ductile shear deformation occurred during the Early Permian (about 280 Ma). The primary mineralization of the Duobaoshan porphyry copper deposit formed in the Early Ordovician (about 475 Ma). The Early Permian ductile shear deformation reshaped the original copper mineralization, further enriching the copper content and increasing the grade.
[1] | Hanson G N, Smimons K P, Bence A E. 1975. 40Ar /39Ar spectrum ages for biotite, hornblende and muscovite in a contact metamorphic zone[J]. Geochimica et Cosmochimica Acta, 39(9): 1269−1278. doi: 10.1016/0016-7037(75)90134-9 |
[2] | Hao Y J, Ren Y S, Duan M X, et al. 2015. Tectonic setting of Triassic magmatic and metallogenic event in the Duobaoshan mineralization area of Heilongjiang Province, NE China[J]. Geological Journal, 52: 67−91. |
[3] | Liu J, Li Y, Zhou Z H, et al. 2017. The Ordovician igneous rocks with high Sr/Y at the Tongshan porphyry copper deposit, satellite of the Duobaoshan deposit, and their metallogenic role[J]. Ore Geology Reviews, 86: 600−614. doi: 10.1016/j.oregeorev.2017.02.036 |
[4] | Liu J, Wu G, Li Y, et al. 2012. Re−Os sulfide (chalcopyrite, pyrite and molybdenite) systematics and fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang Province, China[J]. Journal of Asian Earth Sciences, 49: 300−312. doi: 10.1016/j.jseaes.2011.10.014 |
[5] | McDougall I, Harrison T M. 1999. Geochronology and thermochronology by the 40Ar/39Ar method (2nd ed)[M]. Oxford University Press: 269. |
[6] | Wu F Y, Sun D Y, Li H, et al. 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 187: 143−173. |
[7] | Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41: 1−30. |
[8] | Wu G, Chen Y, Sun F Y, et al. 2015. Geochronology, geochemistry, and Sr–Nd–Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance[J]. Journal of Asian Earth Sciences, 97: 229−250. doi: 10.1016/j.jseaes.2014.07.031 |
[9] | Zhao C, Chao Z, Qin K Z, et al. 2019. Early Palaeozoic high−Mg basalt−andesite suite in the Duobaoshan Porphyry Cu deposit, NE China Constraints on petrogenesis, mineralization, and tectonic setting[J]. Gondwana Research, (71): 91−116. |
[10] | Zeng Q D, Liu J M, Chu S X, et al. 2014. Re–Os and U–Pb geochronology of the Duobaoshan porphyry Cu–Mo–(Au) deposit, northeast China, and its geological significance[J]. Journal of Asian Earth Sciences, 79: 895−909. doi: 10.1016/j.jseaes.2013.02.007 |
[11] | 蔡文艳. 2020. 黑龙江省多宝山矿集区铜-钼-金多金属成矿作用研究[M].长春: 吉林大学博士学位论文. |
[12] | 陈文, 万渝生, 李华芹, 等. 2011. 同位素地质年龄测定技术及应用[J]. 地质学报, 85(11): 1917−1947. |
[13] | 陈柏林. 2000. 糜棱岩型金矿金元素丰度与构造变形的关系[J]. 矿床地质, 19(1): 17−24. doi: 10.3969/j.issn.0258-7106.2000.01.003 |
[14] | 崔根, 王金益, 张景仙, 等. 2008. 黑龙江多宝山花岗闪长岩的锆石SHRIMP U−Pb年龄及其地质意义[J]. 世界地质, 27(4): 387−394. doi: 10.3969/j.issn.1004-5589.2008.04.006 |
[15] | 杜琦, 赵玉明, 卢秉刚, 等. 1988. 多宝山斑岩铜矿床[M]. 北京: 地质出版社. |
[16] | 葛文春, 吴福元, 周长勇, 等. 2007. 兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义[J]. 科学通报, 52(20): 2407−2417. doi: 10.3321/j.issn:0023-074x.2007.20.012 |
[17] | 韩振新, 徐衍强, 郑庆道. 2004. 黑龙江省重要金属和非金属矿产的成矿系列及演化[M]. 哈尔滨: 黑龙江人民出版社. |
[18] | 韩成满, 王长水, 李宗民, 等. 2007. 多宝山铜矿资源潜力[M]. 北京: 地质出版社. |
[19] | 郝宇杰. 2015. 黑龙江多宝山矿集区成矿作用与成矿规律研究[R]. 长春: 吉林大学: 1–199. |
[20] | 李德荣, 吕福林, 刘素颖, 等. 2011. 黑龙江省嫩江县三矿沟矿区地质特征及找矿方向[J]. 中国地质, 38(2): 415−426. doi: 10.3969/j.issn.1000-3657.2011.02.016 |
[21] | 刘驰, 穆治国, 刘如曦, 等. 1995. 多宝山斑岩铜矿区水热蚀变矿物的激光显微探针40Ar/39Ar定年[J]. 地质科学, 30(4): 329−337. |
[22] | 刘军, 周振华, 何哲峰, 等. 2015. 黑龙江省铜山铜矿英云闪长岩锆石U−Pb年龄、地球化学特征及其地质意义[J]. 矿床地质, 34(2): 289−308. |
[23] | 刘军, 周振华, 欧阳荷根. 2017. 黑龙江省多宝山Cu−Mo矿床成矿斑岩锆石U−Pb年龄及地球化学特征[J]. 矿床地质, 36(5): 1057−1073. |
[24] | 刘军, 武广, 钟伟, 等. 2010. 黑龙江省多宝山斑岩型铜(钼)矿床成矿流体特征及演化[J]. 岩石学报, 26(5): 1450−1466. |
[25] | 刘宝山, 张春鹏, 宋万兵. 等. 2020. 黑龙江多宝山斑岩铜矿床叠加改造地质特征及成因[J]. 大地构造与成矿学, 44(6): 1076−1096. |
[26] | 刘连登, 姚风良, 卿敏, 等. 1991. 中国的金矿与韧性剪切带[J]. 黄金科技动态, (3): 1−12. |
[27] | 邱华宁, 彭良. 1997. 40Ar−39Ar年代学与流体包裹体定年[M]. 合肥: 中国科学技术大学出版社. |
[28] | 魏浩, 徐九华, 曾庆栋, 等. 2011. 黑龙江多宝山斑岩铜(钼)矿床蚀变-矿化阶段及其流体演化[J]. 岩石学报, 27(5): 1361−1374. |
[29] | 向安平, 杨郧城, 李贵涛, 等. 2012. 黑龙江多宝山斑岩 Cu–Mo 矿床成岩成矿时代研究[J]. 矿床地质, 31(6): 1237−1248. doi: 10.3969/j.issn.0258-7106.2012.06.009 |
[30] | 相鹏, 张连昌, 徐兴旺, 等. 2012. 新疆青河县玉勒肯-哈腊苏叠加改造型斑岩铜金(钼)矿床地质特征及成因[J]. 岩石学报, 28(8): 2369−2380. |
[31] | 徐桓, 陈天红, 龚全德, 等. 2014. 内蒙古苏尼特左旗地区韧性剪切带与金矿的关系[J]. 矿物岩石, 34(2): 68−76. |
[32] | 许逢明, 赵院冬, 李成立, 崔 健 , 等. 2022. 黑龙江多宝山矿集区三维地质建模与深部找矿预测[J]. 地质与勘探, 58(3): 629−652. |
[33] | 姚志强, 张德全, 赵玉明. 1995. 黑龙江多宝山及其邻区寻找大型斑岩铜矿的研究[R]. 黑龙东省地矿局第三地质调查所. |
[34] | 杨晓勇. 2005. 论韧性剪切带研究及其地质意义[J]. 地球科学进展, 20(7): 765−771. doi: 10.3321/j.issn:1001-8166.2005.07.010 |
[35] | 赵超. 2019. 中亚造山带东段多宝山含金斑岩铜矿床多期岩浆-构造-成矿作用[M]. 北京: 中国科学院大学博士学位论文. |
[36] | 赵广江. 2007. 多宝山矿集区构造演化及其对铜金成矿的控制作用[R]. 北京: 中国地质大学博士学位论文. |
[37] | 赵焕利, 刘旭光, 刘海洋, 等. 2012. 黑龙江多宝山铜矿床中花岗闪长岩锆石SHRIMP U–Pb测年及其构造意义[J]. 地质与资源, 21(5): 421−424. doi: 10.3969/j.issn.1671-1947.2012.05.001 |
[38] | 赵一鸣, 毕承思, 邹晓秋, 等. 1997. 黑龙江多宝山、铜山大型斑岩铜(钼)矿床中辉钼矿的铼-锇同位素年龄[J]. 岩石学报, 18(1): 61−67. |
[39] | 赵元艺, 王江朋, 赵广江, 等. 2011. 黑龙江多宝山矿集区成矿规律与找矿方向[J]. 吉林大学学报(地球科学版), 41(6): 1676−1688. |
[40] | 张兴洲, 杨宝俊, 吴福元, 等. 2006. 中国兴蒙吉黑地区岩石圈结构基本特征[J]. 中国地质, 33(4): 816−823. doi: 10.3969/j.issn.1000-3657.2006.04.011 |
[41] | 朱永峰. 2004. 古老克拉通和古生代造山带中的韧性剪切带型金矿: 金矿成矿条件与成矿环境分析[J]. 矿床地质, 23(4): 509−519. doi: 10.3969/j.issn.0258-7106.2004.04.011 |
Regional geotectonic map (a), geological sketch map of the Duobaoshan ore concentration area (b) and geological sketch map of the Duobaoshan ore field (c)
Photogragh and microscope photogragh of beresite in Duobaoshan copper deposit
40Ar−39Ar plateau age (a) , isochron age (b) and inverse isochron age (c) of hydrothermal altered sericite in Duobaoshan copper deposit
Geological body distribution characteristics of the No.Ⅲ northeast wall of Duobaoshan copper deposit
Characteristics of chalcopyrite ore transformed by shear action
Characteristics of ductile shear structure and distribution characteristics of ore minerals