Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 3
Article Contents

MA Minjie, HAN Yuexin, LI Hui. Research Progress on Pretreatment Technology and Separation of Copper−molybdenum Bulk Concentrate[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 43-50. doi: 10.13779/j.cnki.issn1001-0076.2023.03.004
Citation: MA Minjie, HAN Yuexin, LI Hui. Research Progress on Pretreatment Technology and Separation of Copper−molybdenum Bulk Concentrate[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 43-50. doi: 10.13779/j.cnki.issn1001-0076.2023.03.004

Research Progress on Pretreatment Technology and Separation of Copper−molybdenum Bulk Concentrate

More Information
  • Cu−Mo sulfide ores are often closely associated with each other and have similar floatability. Their flotation separation has always been the focus of research. Copper−molybdenum ore is generally separated by flotation method. The technology of Copper−molybdenum mixed flotation − copper−molybdenum separation is the most widely used process in the industry at present, after bulk flotation, usually the first pretreatment process, as far as possible to remove the flotation agents in copper−molybdenum bulk concentrate and desorption of residual agents from mineral surface, to provide conditions for copper−molybdenum separation. In this paper, the copper molybdenum separation pretreatment process is divided into three categories, one is desorption reagent removal method, the second is mechanical reagent removal method, and the third is the oxidation treatment of mineral surface. The first two are currently more commonly used pretreatment regent removal methods, but there are still complex processes, pollution and other characteristics, the oxidation treatment of mineral surface in addition to the purpose of reagent removal, but also to achieve the surface oxidation of copper minerals, increase floatability difference between copper and molybdenum minerals. Through the research and technical summary of flotation separation pretreatment technology of copper−molybdenum mixed concentrate, it is of great significance to improve the separation effect of copper−molybdenum mixed concentrate.

  • 加载中
  • [1] 李尧, 文书明, 丰奇成, 等. 铜钼混合精矿浮选分离技术研究进展[J]. 金属矿山, 2018(7): 13−18.

    Google Scholar

    LI Y, WEN S M, FENG Q C, et al. Research progress on flotation separation technology of copper−molybdenum mixed concentrate[J]. Metal Mine, 2018(7): 13−18.

    Google Scholar

    [2] 赖桂华. 铜钼混合精矿高效分离试验研究与应用[J]. 黄金, 2021, 42(3): 60−62+67.

    Google Scholar

    LAI G H. Research and application on high efficiency separation of copper and molybdenum mixed concentrate[J]. Gold, 2021, 42(3): 60−62+67.

    Google Scholar

    [3] 孟奇, 崔毅琦, 童雄, 等. 铜钼分离技术现状与趋势[J]. 矿冶, 2014, 23(2): 19−22+39.

    Google Scholar

    MENG Q, CUI Y Q, TONG X, et al. Status and trend of Cu−Mo separation technology[J]. Mining and Metallurgy, 2014, 23(2): 19−22+39.

    Google Scholar

    [4] WILLS, B. , NAPIERMUNN, T. Mineral processing technology, 7th edition, Elsevier Science & Technology Books, Amsterdam, 2006.

    Google Scholar

    [5] 赵宇航, 吕晋芳, 吴维明, 等. 铜钼矿浮选分离技术研究进展[J/OL]. 矿产保护与利用: 1−20[2022−10−26].

    Google Scholar

    ZHAO Y H, LV J F, WU W M, et al. Research progress of flotation separation technology of Cu−Mo ore [J/OL]. Protection and Utilization of Mineral Resources : 1−20[2022−10−26].

    Google Scholar

    [6] 施帅, 何廷树, 李慧. Ca2+和Mg2+对辉钼矿可浮性的影响对比[J]. 过程工程学报, 2021, 21(2): 153−159.

    Google Scholar

    SHI S, HE T S, LI H. Effect of Ca2+ and Mg2+ on the floatability of molybdenite[J]. Chinese Journal of Process Engineering, 2021, 21(2): 153−159.

    Google Scholar

    [7] 苏超, 刘殿文, 申培伦, 等. 黄铜矿和方铅矿的电化学特性及浮选行为研究进展[J]. 有色金属工程, 2020, 10(09): 79−87.

    Google Scholar

    SU C, LIU D W, SHEN P L, et al. Research progress on electrochemical characteristics and flotation behavior of chalcopyrite and galena [J]. Nonferrous Metals Engineering, 20, 10(9): 79−87.

    Google Scholar

    [8] 熊道陵, 陈湘清, 蒋玉仁. 含钙物质对黄铜矿和黄铁矿浮选行为的影响[J]. 湖南有色金属, 2004(6): 8−10.

    Google Scholar

    XIONG D L, CHEN X Q, JIANG Y R. Effect of calcium−containing substances on flotation behavior of chalcopyrite and pyrite[J]. Hunan Nonferrous Metals, 2004(6): 8−10.

    Google Scholar

    [9] 郑锡联. 新型抑制剂在铜钼分离中的试验研究[D]. 赣州: 江西理工大学, 2012.

    Google Scholar

    ZHENG X L. Experimental study on new inhibitors in the separation of copper and Molybdenum [D]. Ganzhou: Jiangxi University of Science and Technology, 2012.

    Google Scholar

    [10] 管晓颖. 铜钼矿浮选分离多因素交互影响研究[D]. 北京有色金属研究总院, 2016.

    Google Scholar

    GUAN X Y. Study on multi−factor interaction of flotation separation of copper and molybdenum ore [D]. Beijing Nonferrous Metals Research Institute, 2016.

    Google Scholar

    [11] 蒋素芳, 叶从新, 魏党生, 等. 西藏某钼硫矿等可浮选矿工艺研究[J]. 矿山机械, 2016, 44(5): 58−62.

    Google Scholar

    JIANG S F, YE C X, WEI D S, et al. Research on flotation beneficiation Technology of a molybdenum sulfide ore in Xizang Province[J]. Mining & Mining Machinery, 2016, 44(5): 58−62.

    Google Scholar

    [12] 张梅, 黄凌云, 蓝卓越, 等. 黄铜矿浮选研究进展[J]. 矿产保护与利用, 2022, 42(2): 172−178.

    Google Scholar

    ZHANG M, HUANG L Y, LAN Z Y, et al. Research progress of chalcopyrite flotation[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 172−178.

    Google Scholar

    [13] 吴莉娟. 一种用于铜钼混合精矿脱药的斜板浓密机[P]. 四川省, 会理县马鞍坪矿山废石综合利用有限责任公司, 2014−07−23.

    Google Scholar

    WU L J. A inclined plate thickener used for demedicating copper−molybdenum mixed concentrate[P]. Sichuan Province, Huili County Maanping Mine Waste Comprehensive Utilization Co. , LTD. , 2014−07−23.

    Google Scholar

    [14] 周厚文, 解钊, 刘明实, 等. 低品位铜钼精矿三级流动性脱药铜钼分离试验研究[J]. 甘肃冶金, 2021, 43(5): 5−9.

    Google Scholar

    ZHOU H W, XIE Z, LIU M S, et al. Experimental study on separation of Cu−Mo from low−grade Cu−Mo concentrate with three−stage fluidity[J]. Gansu Metallurgy, 2021, 43(5): 5−9.

    Google Scholar

    [15] 杨凤, 张磊, 刘强, 等. 铜钼混合精矿分离浮选试验研究[J]. 黄金, 2011, 32(7): 48−51.

    Google Scholar

    YANG F, ZHANG L, LIU Q, et al. Experimental study on separation and flotation of Cu−Mo mixed concentrate[J]. Gold, 2011, 32(7): 48−51.

    Google Scholar

    [16] 翟庆祥. 含钼铜精矿脱药过程中黄药的迁移与转化规律研究[D]. 沈阳: 东北大学, 2014.

    Google Scholar

    ZHAI Q X. Study on migration and transformation of xanthate during depharmacizing of molybdenum−bearing copper concentrate [D]. Sshenyang: Northeastern University, 2014.

    Google Scholar

    [17] 杨建文. 浅析云南普朗铜矿区铜钼分离浮选中硫化钠的作用[J]. 新疆有色金属, 2022, 45(1): 37−39.

    Google Scholar

    YANG J W. Analysis on the role of sodium sulfide in Cu−Mo separation flotation in Pulang copper mine, Yunnan Province[J]. Xinjiang Nonferrous Metals, 2022, 45(1): 37−39.

    Google Scholar

    [18] 黄翔, 杜浩荣, 肖日鹏, 等. 西藏甲玛铜钼矿浮选试验研究[J]. 矿冶, 2015, 24(4): 17−21.

    Google Scholar

    HUANG X, DU H R, XIAO R P, et al. Experimental study on flotation of jiama copper−molybdenum ore in Xizang Province[J]. Mining and Metallurgy, 2015, 24(4): 17−21.

    Google Scholar

    [19] 李琳, 吕宪俊, 栗鹏. 钼矿选矿工艺发展现状[J]. 中国矿业, 2012(5): 99−103+107. doi: 10.3969/j.issn.1004-4051.2012.05.025

    CrossRef Google Scholar

    LI L, LV X J, LI P. Development status of molybdenum ore dressing process[J]. China Mining, 2012(5): 99−103+107. doi: 10.3969/j.issn.1004-4051.2012.05.025

    CrossRef Google Scholar

    [20] 俞皓, 活性炭在我国环境保护中的应用及再生技术[J]. 环境污染与防治, 1982(6): 20.

    Google Scholar

    YU H. Application of activated carbon in environmental protection of our country and regeneration technology [J]. Environmental Pollution and Control, 1982, (6): 20.

    Google Scholar

    [21] 周政, 石磊, 邱允武. 某铜钼矿选矿工艺试验研究[J]. 矿产综合利用, 2014(4): 25−29.

    Google Scholar

    ZHOU Z, SHI L, QIU Y W. Experimental study on beneficiation process of a copper molybdenum ore[J]. Comprehensive Utilization of Mineral Resources, 2014(4): 25−29.

    Google Scholar

    [22] 林桓. 用活性炭处理含黄药2#油污水[J]. 黄金, 1989, 金,(7): 40−45.

    Google Scholar

    LIN H. Treatment of Xanthate 2# oil wastewater with activated carbon[J]. Gold, 1989, 金,(7): 40−45.

    Google Scholar

    [23] 管晓颖, 宋永胜, 李文娟, 等. 铜钼混合精矿残余药剂测量及脱药试验研究[J]. 稀有金属, 2017, 41(7): 810−815.

    Google Scholar

    GUAN X Y, SONG Y S, LI W J, et al. Study on residual reagent measurement and dedrug test of Cu−Mo mixed concentrate[J]. Rare Metals, 2017, 41(7): 810−815.

    Google Scholar

    [24] 魏守岩. 铜钼混合精矿残余药剂测量及脱药试验研究[J]. 世界有色金属, 2017(14): 254−255.

    Google Scholar

    WEI S Y. Study on residual reagent measurement and dedrug test of Cu−Mo mixed concentrate[J]. World Nonferrous Metals, 2017(14): 254−255.

    Google Scholar

    [25] 陈建华, 铜锌混合精矿浮选分离试验研究[J]. 中国矿业, 2011, 20 (11): 78–86.

    Google Scholar

    CHEN J H. Experimental study on flotation separation of copper and zinc mixed concentrate [J]. China Mining, 2011, 20 (11): 78 − 86.

    Google Scholar

    [26] 郭菲菲, 活性炭吸附去除水中阿特拉津及臭氧微气泡原位再生效能[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    Google Scholar

    GUO F F, In situ regeneration of Atrazine and ozone microbubbles by activated carbon adsorption in water [D]. Harbin: Harbin Institute of Technology, 2021.

    Google Scholar

    [27] 牛芳银, 马晶, 万宏民, 等. 提高某难选钼矿钼精矿品位的试验研究[J]. 中国钼业, 2014, 38(1): 38−40.

    Google Scholar

    NIU F Y, MA J, WAN H M, et al. Experimental study on improving molybdenum concentrate grade of a refractory molybdenum ore[J]. China Molybdenum Industry, 2014, 38(1): 38−40.

    Google Scholar

    [28] 刘迎春. 浮选条件对巯基乙酸钠抑制效果的影响试验[J]. 现代矿业, 2014, 30(9): 196−197+209.

    Google Scholar

    LIU Y C. Effect of flotation conditions on inhibition effect of sodium mercaptoacetate[J]. Modern Mining, 2014, 30(9): 196−197+209.

    Google Scholar

    [29] 雷贵春. 旋流器在德兴铜矿铜钼分离工艺中的应用[J]. 矿冶, 2005(1): 32−36.

    Google Scholar

    LEI G C. Application of cyclone in Cu−Mo separation process of Dexing copper mine[J]. Mining and Metallurgy, 2005(1): 32−36.

    Google Scholar

    [30] 李春菊, 郑德雪. 预处理新工艺回收伴生钼的研究[J]. 有色金属(选矿部分), 2005(6): 24−26+37.

    Google Scholar

    LI C J, ZHENG D X. Study on recovery of associated molybdenum by a new pretreatment process[J]. Nonferrous Metals (Mineral Processing Section), 2005(6): 24−26+37.

    Google Scholar

    [31] 刘子龙, 杨洪英, 佟琳琳. 内蒙古大型铜钼矿铜钼分离试验研究[J]. 矿产综合利用, 2013(1): 30−33.

    Google Scholar

    LIU Z L, YANG H Y, TONG L L. Experimental study on separation of copper and molybdenum from large copper−molybdenum ore in Inner Mongolia[J]. Comprehensive Utilization of Mineral Resources, 2013(1): 30−33.

    Google Scholar

    [32] 王剑, 刘子龙, 陈国宝, 等. 铜钼浮选分离中硫化钠的消耗机理[J]. 东北大学学报(自然科学版), 2018, 39(3): 362−366.

    Google Scholar

    WANG J, LIU Z L, CHEN G B, et al. Consumption mechanism of sodium sulfide in flotation separation of copper and molybdenum[J]. Journal of Northeastern University (Natural Science), 2018, 39(3): 362−366.

    Google Scholar

    [33] 张军成. 铜钼矿石的选矿及铜铝分离工艺[J]. 矿业快报, 2006(8): 13−15+28.

    Google Scholar

    ZHANG J C. Beneficiation and copper−aluminum separation process of copper−molybdenum ore[J]. Mining Express, 2006(8): 13−15+28.

    Google Scholar

    [34] NATHANIEL A, YOUNG O. Flotation recovery of molybdenite: US Patent 2559104[P]. 1951.

    Google Scholar

    [35] CURTIS, C. Process of Purifying Molybdenite Concentrates. US Patent 2238250 [P]. 1941.

    Google Scholar

    [36] ODAKA T, MIYASHITA H, NAKAYAMA R. Purification of Molybdenum Mineral JPPatent H5−195106[P]. 1993.

    Google Scholar

    [37] BARZYK W, MALYSA K, POMIANOWSKI A. The influence of surface oxidation ofchalcocite on its floatability and ethyl xanthate sorption[J]. Int. J. Miner. Process. 1981 (8): 17–29.

    Google Scholar

    [38] HIRAJIMA, T, MORI M, ICHIKAWA O, et al. Selective flotation of chalcopyrite and molybdenite with plasma pre−treatment[J]. Minerals Engineering, 2014(66-68): 102−111.

    Google Scholar

    [39] MAY F, GOCK E, VOGT V, et al. Plasma−modification of sulfides foroptimizing floth−flotation properties[J]. Minerals Engineering, 2012(35): 67−74.

    Google Scholar

    [40] CHIMONYO W, WIESE J, TADIE M, et al. The use of oxidizing agents forcontrol of electrochemical potential in flotation, Canadian Institute of Mining, Metallurgy and Petroleum, Quebec, (2016) Canada.

    Google Scholar

    [41] WISNU S, TSUYOSHI H, HAJIM E M, et al. Effect of Fenton−like oxidation reagent on hydrophobicity and floatability of chalcopyrite and molybdenite[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018(554): 34−48.

    Google Scholar

    [42] TSUYOSHIHIRAJIMA, HAJIME MIKI, GDEPANDHEWISNUSUYANTARA, et al. Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation[J]. Elsevier Ltd, 2017, 100

    Google Scholar

    [43] SUYANTARA, G. , HIRAJIMA, T., MIKI, H., et al. Effect of H2O2 and potassium amyl xanthate on separation of enargite and tennantite from chalcopyrite and bornite using flotation[J]. Minerals Engineering, 2020(152): 106371.

    Google Scholar

    [44] 李冠男, 蒋慧灵, 杨守生. 过硫酸铵的热稳定性研究[J]. 安全与环境学报, 2011, 11(3): 191−195.

    Google Scholar

    LI GUANNAN, JIANG HUILING, YANG SHOUSHENG. Thermal stability of ammonium persulfate[J]. Journal of Safety and Environment, 2011, 11(3): 191−195.

    Google Scholar

    [45] 严海, 杨丙桥, 曾梦媛, 等. 过硫酸铵在硫化铜钼矿分离中的应用及机理[J]. 中国有色金属学报, 2022, 32(1): 279−285.

    Google Scholar

    YAN HAI, YANG BINGQIAO, ZENG MENGYUAN, et al. Application and mechanism of ammonium persulfate in separation of copper sulfide molybdenum ore[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(1): 279−285.

    Google Scholar

    [46] 李琳, 吕宪俊, 栗鹏. 钼矿选矿工艺发展现[J]. 中国矿业, 2012, 21(2): 99−103+107.

    Google Scholar

    LI LIN, LV XIANJUN, LI PENG. Development of molybdenum ore dressing process[J]. China Mining, 2012, 21(2): 99−103+107.

    Google Scholar

    [47] 李家庆. 美国铜矿选矿现状及发展趋势[J]. 有色金属(冶炼部分), 1978(9): 48−54.

    Google Scholar

    LI JIAQING. Status and Development Trend of copper ore dressing in USA[J]. Nonferrous Metals (Smelting Part), 1978(9): 48−54.

    Google Scholar

    [48] 杨松荣, 对白乃庙铜矿铜钼分离流程的探讨[J]. 有色矿山, 1989(2): 25–28.

    Google Scholar

    YANG SONGRONG. Discussion on the separation process of copper and molybdenum in Bainaimiao Copper Mine [J]. Non−ferrous Mine, 1989 (2): 25 −− 28.

    Google Scholar

    [49] 张启修, 赵秦生. 钨钼冶金[M]. 北京: 冶金工业出版社, 2005.

    Google Scholar

    ZHANG QIXIU, ZHAO QINSHENG. Tungsten and molybdenum Metallurgy [M]. Beijing: Metallurgical Industry Press, 2005.

    Google Scholar

    [50] TANG X, CHEN Y, LIU K, et al. Selective flotation separation of molybdenite and chalcopyrite by thermal pretreatment under air atmosphere[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 583: 123958. doi: 10.1016/j.colsurfa.2019.123958

    CrossRef Google Scholar

    [51] KAHRIZSANGI R, ABBASI M, SAIDI A. Model−fitting approach to kinetic analysis of non−isothermal xidation of molybdenite, Iranian journal of chemistry & chemical engineering international English edition, 2007, 26(2): 119–123.

    Google Scholar

    [52] YAMAMOTO M, EINSTEIN T, FUHRER M, et al. Anisotropic etching of atomically thin MoS2, J. Phys. Chem. C, 2013, 117(48): 25643–25649.

    Google Scholar

    [53] WANG J, ROSE K, LIEBER C. Load−independent friction: MoO3 nanocrystal lubricants[J]. J. Phys. Chem. B, 2003(103): 8405−8409.

    Google Scholar

    [54] SPYCHALSKI W, PISAREK M, SZOSZKIEWICZ R. Microscale insight into oxidation of single MoS2 crystals in air, J. Phys. Chem. C, 2017, (121): 26027–26033.

    Google Scholar

    [55] 夏正倩, 刘晨辉, 张梦萍, 等. 辉钼矿微波氧化焙烧法制备三氧化钼[J]. 有色金属工程. 2021, 11(5): 38−44

    Google Scholar

    XIA ZHENGQIAN, LIU CHENHUI, ZHANG MENGPING, et al. Preparation of molybdenum trioxide by microwave oxidation roasting of molybdenite [J]. Nonferrous Metals Engineering, 2021, 11(5): 38−44. (in Chinese)

    Google Scholar

    [56] GAN M, FAN X, CHEN X, et al. Reaction mechanisms of low−grade molybdenum concentrate during calcification roasting process[J]. 中国有色金属学报(英文版), 2016, 26(11): 3015−3023.

    Google Scholar

    [57] ŽIVKOVIĆ Ž, MITEVSKA N, SAVOVIĆ V. Kinetics and mechanism of the chalcopyrite−pyrite concentrate oxidation process[J]. ThermochimicaActa, 1996(282-283): 121−130.

    Google Scholar

    [58] 蒋永林. 辉钼矿微波氧化焙烧基础理论研究[D]. 昆明: 昆明理工大学, 2018.

    Google Scholar

    JIANG YONGLIN. Study on Basic Theory of Molybdenite Microwave Oxidation Roasting [D]. Kunming: Kunming. University of Science and Technology, 2018.

    Google Scholar

    [59] 王苗, 杨双平, 庞锦琨, 等. 微波活化预焙烧对辉钼矿焙砂脱硫影响研究[J]. 矿冶工程, 2018, 38(5): 115−118.

    Google Scholar

    WANG MIAO, YANG SHUANGPING, PANG JINKUN, et al. Effect of microwave activated preroasting on desulfurization of molybdenite calcine[J]. Mining and Metallurgical Engineering, 2018, 38(5): 115−118.

    Google Scholar

    [60] G. R. da Silva, K. E. Waters. The effects of microwave irradiation on the floatability of chalcopyrite, pentlandite and pyrrhotite[J]. Advanced Powder Technology, 2018, 29(12).

    Google Scholar

    [61] 王志杰, 李育彪, 王洪铎, 等. 微波预处理对铜钼硫化矿海水浮选的影响机理[J]. 金属矿山, 2020(2): 19−23.

    Google Scholar

    WANG ZHIJIE, LI YUBIAO, WANG HONGDUO, et al. Effect mechanism of Microwave Pretreatment on Seawater Flotation of Cu−Mo sulfide Ore[J]. Metal Mine, 2020(2): 19−23.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Article Metrics

Article views(945) PDF downloads(237) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint