| Citation: | XIA Yongtao, MA Yingqiang, YIN Wanzhong, ZHONG Shuiping, LU Jun, ZHANG Dewen, ZHAN Yinquan. Flotation Recovery Prediction of Zijinshan Copper Ore Based on I−GWO−BP Neural Network[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 51-59. doi: 10.13779/j.cnki.issn1001-0076.2023.03.005 |
The traditional method of measuring flotation recovery has some problems, such as low efficiency and hysteresis. Combined with the flotation plant production of Zijinshan sulfide copper ore, characteristics selection of flotation condition factors such as raw ore grade and dosage of ammonium dibutyl dithiophosphate was carried out based on MI (Mutual Information) method. On this basis, three prediction models of flotation recovery were established based on BP (Back Propagation) GWO−BP (Grey Wolf Optimizer−Back Propagation) and I−GWO−BP (Improved−Grey Wolf Optimizer−Back Propagation) . The flotation workshop production data of Zijinshan sulfide copper ore were selected for neural network training and verification test, and the accuracy of the flotation recovery prediction model was analyzed. The results showed that compared with BP and GGO−BP, the flotation recovery prediction model based on I−GWO−BP had a root mean squared error and a correlation coefficient and the predicted value of flotation recovery was the closest to the true value, and the generalization ability of the network was significantly stronger. The results of this study can support the development of efficient, accurate and automatic online prediction techniques for flotation recovery.
| [1] | 刘青, 王彬, 袁玮, 等. 金矿浮选回收率预测模型[J]. 北京科技大学学报, 2014, 36(11): 1456−1461. LIU Q, WANG B, YUAN W, et al. Prediction model of flotation recovery from gold mine[J]. Journal of University of Science and Technology Beijing, 2014, 36(11): 1456−1461. |
| [2] | 刘利敏, 杨文旺, 刘之能, 等. 基于BP神经网络的浮选回收率预测模型[J]. 有色金属(选矿部分), 2013(S1): 206−208. LIU L M, YANG W W, LIU Z N, et al. Flotation recovery prediction model based on BP neural network[J]. Nonferrous Metals (Mineral Processing Section), 2013(S1): 206−208. |
| [3] | 王衡嵩, 魏志聪, 彭蓉, 等. 基于RSM和RA−BPNN的锌窑渣中铜浮选试验优化[J]. 人工晶体学报, 2019, 48(8): 1557−1564. doi: 10.3969/j.issn.1000-985X.2019.08.030 WANG H S, WEI Z C, PENG R, et al. Optimization of copper flotation test in zinc kiln slag based on RSM and RA−BPNN[J]. Journal of Synthetic Crystals, 2019, 48(8): 1557−1564. doi: 10.3969/j.issn.1000-985X.2019.08.030 |
| [4] | 张勇, 朱晶. 基于混沌蚁群神经网络的浮选过程经济技术指标预测[J]. 上海交通大学学报, 2016, 50(6): 975−979. ZHANG Y, ZHU J. Prediction of economic and technical indicators of flotation process based on chaotic ant colony neural network[J]. Journal of Shanghai Jiaotong University, 2016, 50(6): 975−979. |
| [5] | 冉宇, 李梅, 高凯, 等. 稀土矿浮选泡沫大小与回收率的相关性[J]. 化工矿物与加工, 2019, 48(11): 24−28. doi: 10.16283/j.cnki.hgkwyjg.2019.11.007 RAN Y, LI M, GAO K, et al. Correlation between flotation foam size and recovery rate of rare earth ore[J]. Chemical Minerals and Processing, 2019, 48(11): 24−28. doi: 10.16283/j.cnki.hgkwyjg.2019.11.007 |
| [6] | MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46−61. doi: 10.1016/j.advengsoft.2013.12.007 |
| [7] | 吴丁杰, 周庆兴, 温立书. 基于Logistic混沌映射的改进麻雀算法[J]. 高师理科学刊, 2021, 41(6): 10−15. doi: 10.3969/j.issn.1007-9831.2021.06.003 WU D J, ZHOU Q X, WEN L S. Improved sparrow algorithm based on logistic chaos mapping[J]. Journal of Science of Teachers' College and University, 2021, 41(6): 10−15. doi: 10.3969/j.issn.1007-9831.2021.06.003 |
| [8] | 刘公致, 吴琼, 王光义, 等. 改进型Logistic混沌映射及其在图像加密与隐藏中的应用[J]. 电子与信息学报, 2022, 44(10): 3602−3609. LIU G Z, WU Q, WANG G Y, et al. Improved Logistic chaos mapping and its application in image encryption and concealment[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3602−3609. |
| [9] | 马晓宁, 李笑含. 基于Tent混沌映射的可复制的鲸鱼算法[J]. 计算机仿真, 2022, 39(8): 363−368. doi: 10.3969/j.issn.1006-9348.2022.08.069 MA X N, LI X H. Reproducible whale algorithm based on Tent chaos mapping[J]. Computer Simulation, 2022, 39(8): 363−368. doi: 10.3969/j.issn.1006-9348.2022.08.069 |
| [10] | 刘园园, 贺兴时. 基于Tent混沌映射的改进的萤火虫算法[J]. 纺织高校基础科学学报, 2018, 31(4): 511−518. LIU Y Y, HE X S. Improved firefly algorithm based on Tent chaos mapping[J]. Journal of Basic Science of Textile Universities, 2018, 31(4): 511−518. |
| [11] | 马良玉, 於世磊, 王佳聪, 等. 基于XGBoost建模及改进灰狼优化算法的再热汽温预测优化控制[J]. 热能动力工程, 2023, 38(1): 104−111. MA L Y, YU S L, WANG J C, et al. Optimization control of reheat steam temperature prediction based on XGBoost modeling and improved gray wolf optimization algorithm[J]. Journal of Engineering for Thermal Energy and Power, 2023, 38(1): 104−111. |
The value of mutual information between each flotation condition factor and flotation recovery
Structure diagram of BP neural network
Sequence of Tent chaotic map
Change trend of convergence factor
Flowchart of flotation recovery prediction model based on I−GWO−BP neural network
Comparison of characteristic values of each flotation condition factor sample point before and after de−noising
Data of each flotation process parameter after normalization
Comparison between the predicted flotation recovery results of three neural networks and the actual values