Citation: | WANG Qiqi, SUN He, GU Haiou, HOU Zhenhui, GE Can, WANG Fangyue, ZHOU Taofa. Elemental Distribution Behavior of Sulfonic Acid Cation-Exchange Resins and Applications to High-precision Isotope Analysis[J]. Rock and Mineral Analysis, 2024, 43(1): 63-75. doi: 10.15898/j.ykcs.202309260154 |
The distribution coefficient (Kd) of elements in ion exchange resin is the basis of element purification and separation, which is the premise for high-precision isotope analysis. However, systematic comparison of the Kd in different types of acid is lacking, which has hindered the development of efficient separation procedures for emerging isotope system. In this research, the Kd of 60 elements in AG50W-X8 cationic resin with different concentrations and types of acid was studied. Our results show that, in acid solutions, the Kd of almost all elements is negatively related to acidity. Compared to nitric acid, a significant decrease in the Kd for Al, Fe, Se, Pd, Cd, and In is observed in hydrochloric acid. The addition of hydrofluoric acid can significantly reduce the Kd of Be, Al, Sc, Fe, Sn, Th, U, Ti, Zr, and Hf in dilute hydrochloric and nitric acid, so that they can be quantitively eluted from the resin. In the mixed hydrofluoric acid solutions, KdREE shows an initial increasing and then decreasing trend as the concentration of HCl increases. The present study provides data support for the development and optimization of element purification processes that are suitable for high-precision metal stable isotope analysis. The BRIEF REPORT is available for this paper at
[1] | Lin J, Yang A, Lin R, et al. Review on in situ isotopic analysis by LA-MC-ICP-MS[J]. Journal of Earth Science, 2023, 34(6): 1663−1691. doi: 10.1007/s12583-023-2002-4 |
[2] | 郭冬发, 李金英, 李伯平, 等. 电感耦合等离子体质谱分析方法的重要进展(2005~2016年)[J]. 质谱学报, 2017, 38(5): 599−610. Guo D F, Li J Y, Li B P, et al. Major advances in inductively coupled plasma mass spectrometry (2005—2006)[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(5): 599−610. |
[3] | 蒋少涌, 陈唯, 赵葵东, 等. 基于LA-(MC)-ICP-MS的矿物原位微区同位素分析技术及其应用[J]. 质谱学报, 2021, 42(5): 623−640. Jiang S Y, Chen W, Zhao K D, et al. In situ micro-analysis of isotopic compositions of solid minerals using LA-(MC)-ICP-MS methods and their applications[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 623−640. |
[4] | 杜媛媛, 朱振利, 郑洪涛, 等. 色谱与MC-ICP-MS联用在线同位素分析的研究进展[J]. 分析测试学报, 2022, 41(1): 32−42. Du Y Y, Zhu Z L, Zheng H T, et al. On-line isotopic analysis by chromatography coupled to MC-ICP-MS[J]. Journal of Instrumental Analysis, 2022, 41(1): 32−42. |
[5] | Makishima A, Nakamura E J G N. Suppression of matrix effects in ICP‐MS by high power operation of ICP: Application to precise determination of Rb, Sr, Y, Cs, Ba, REE, Pb, Th and U at ng g−1 levels in milligram silicate samples[J]. Geostandards Newsletter, 1997, 21(2): 307−319. doi: 10.1111/j.1751-908X.1997.tb00678.x |
[6] | Horwitz E P, Dietz M L, Chiarizia R, et al. Separation and preconcentration of uranium from acidic media by extraction chromatography[J]. Analytica Chimica Acta, 1992, 266(1): 25−37. doi: 10.1016/0003-2670(92)85276-C |
[7] | le Fèvre B, Pin C J A C A. A straightforward separation scheme for concomitant Lu-Hf and Sm-Nd isotope ratio and isotope dilution analysis[J]. Analytica Chimica Acta, 2005, 543(1-2): 209−221. doi: 10.1016/j.aca.2005.04.044 |
[8] | Strelow F W, Rethemeyer R, Bothma C J A C. Ion exchange selectivity scales for cations in nitric acid and sulfuric acid media with a sulfonated polystyrene resin[J]. Analytical Chemistry, 1965, 37(1): 106−111. doi: 10.1021/ac60220a027 |
[9] | 李津, 唐索寒, 马健雄, 等. 金属同位素质谱分析中样品处理的基本原则与方法[J]. 岩矿测试, 2021, 40(5): 627−636. Li J, Tang S H, Ma J X, et al. Principles and treatment methods for metal isotopes analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 627−636. |
[10] | Blichert-Toft J, Chauvel C, Albarède F J C T M, et al. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS[J]. Contributions to Mineralogy and Petrology, 1997, 127(3): 248−260. doi: 10.1007/s004100050278 |
[11] | Chen H, Tian Z, Tuller-Ross B, et al. High-precision potassium isotopic analysis by MC-ICP-MS: An inter-laboratory comparison and refined K atomic weight[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(1): 160−171. doi: 10.1039/C8JA00303C |
[12] | 周春山. 化学分离富集方法及应用[M]. 长沙: 中南工业大学出版社, 1996: 279-284. Zhou C S. Method and application of chemical separation and preconcentration[M]. Changsha: Central South University of Technology Press, 1996: 279-284. |
[13] | 刘文刚, 刘卉, 李国占, 等. 离子交换树脂在地质样品Sr-Nd同位素测定中的应用[J]. 地质学报, 2017, 91(11): 2584−2592. Liu W G, Liu H, Li G Z, et al. The application of ion exchange resins in Sr-Nd isotopic in geological samples[J]. Acta Geologica Sinica, 2017, 91(11): 2584−2592. |
[14] | 闫斌, 朱祥坤, 陈岳龙. 样品量的大小对铜锌同位素测定值的影响[J]. 岩矿测试, 2011, 30(4): 400−405. Yan B, Zhu X K, Chen Y L. Effects of sample size on Cu and Zn isotope ratio measurement[J]. Rock and Mineral Analysis, 2011, 30(4): 400−405. |
[15] | 尹鹏, 何倩, 何会军, 等. 离子交换树脂法分离沉积物中锶和钕的影响因素研究[J]. 岩矿测试, 2018, 37(4): 379−387. Yin P, He Q, He H J, et al. Study on the factors influencing the separation of Sr and Nd in sediments by ion exchange resin[J]. Rock and Mineral Analysis, 2018, 37(4): 379−387. |
[16] | 李世珍, 马健雄, 朱祥坤, 等. 离子交换分离过程中铅同位素分馏评估及针对MC-ICPMS铅同位素测定的分离纯化方法的修正[J]. 岩石矿物学杂志, 2015, 34(5): 785−792. Li S Z, Ma J X, Zhu X K, et al. Pb isotopic fractionation during the ion exchange process and the modification of purification methods for isotope determination by MC-ICPMS[J]. Acta Petrologica et Mineralogica, 2015, 34(5): 785−792. |
[17] | Gu H O, Sun H, Wang F Y, et al. A new practical isobaric interference correction model for the in situ Hf isotopic analysis using laser ablation-multi-collector-ICP-mass spectrometry of zircons with high Yb/Hf ratios[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1223−1232. doi: 10.1039/C9JA00024K |
[18] | 漆亮, 黄小文. 地质样品铂族元素及Re-Os同位素分析进展[J]. 矿物岩石地球化学通报, 2013, 32(2): 171−189. Qi L, Huang X W. A review on platinum-group elements and Re-Os isotopic analyses of geological samples[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(2): 171−189. |
[19] | 冯林秀, 李正辉, 曹秋香, 等. 硼同位素分析测试技术研究进展[J]. 岩矿测试, 2023, 42(1): 16−38. Feng L X, Li Z H, Cao Q X, et al. A review on the development of boron isotope analytical techniques[J]. Rock and Mineral Analysis, 2023, 42(1): 16−38. |
[20] | 苟龙飞, 金章东, 邓丽, 等. 高效分离Li及其同位素的MC-ICP-MS精确测定[J]. 地球化学, 2017, 46(6): 528−537. Gou L F, Jin Z D, Deng L, et al. Efficient for Li and high-precision and accuracy determination of Li isotopic compositions by MC-ICP-MS[J]. Geochimica, 2017, 46(6): 528−537. |
[21] | 李子夏, 贺茂勇, 逯海, 等. 多接收等离子质谱高精度测定现代人齿中Mg同位素[J]. 分析化学, 2016, 44(5): 787−791. Li Z X, He M Y, Lu H, et al. Separation and isotopic measurement of Mg isotope ratios in tooth samples using multiple collector-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(5): 787−791. |
[22] | 陈雅祺, 孙贺, 顾海欧, 等. 基于MC-ICP-MS的地质样品的高精度钾同位素分析方法[J]. 地质学报, 2023, 97(4): 1360−1370. Chen Y Q, Sun H, Gu H O, et al. High precision potassium isotope analysis of geological samples using MC-ICP-MS[J]. Acta Geologica Sinica, 2023, 97(4): 1360−1370. |
[23] | 刘峪菲, 祝红丽, 刘芳, 等. 钙同位素化学分离方法研究[J]. 地球化学, 2015, 44(5): 469−476. Liu Y F, Zhu H L, Liu F, et al. Methodological study of chemical separation of calcium for TIMS measurements[J]. Geochimica, 2015, 44(5): 469−476. |
[24] | 田兰兰, 于慧敏, 南晓云, 等. Ba同位素分析方法综述[J]. 高校地质学报, 2021, 27(3): 289−305. Tian L L, Yu H M, Nan X Y, et al. A review of barium isotope analytical methods[J]. Geological Journal of China Universities, 2021, 27(3): 289−305. |
[25] | 霍金晶, 韩延兵. 利用MC-ICP-MS测定铁同位素方法综述[J]. 西北地质, 2021, 54(4): 280−289. Huo J J, Han Y B. A review of MC-ICP-MS Fe isotope analytical methods[J]. Northwestern Geology, 2021, 54(4): 280−289. |
[26] | 史凯, 朱建明, 吴广亮, 等. 地质样品中高精度铬同位素分析纯化技术研究进展[J]. 岩矿测试, 2019, 38(3): 341−353. Shi K, Zhu J M, Wu G L, et al. A review on the progress of purification techniques for high precision determination of Cr isotopes in geological samples[J]. Rock and Mineral Analysis, 2019, 38(3): 341−353. |
[27] | 陈栩琦, 曾振, 于慧敏, 等. 高精度稳定锶同位素分析方法综述[J]. 高校地质学报, 2021, 27(3): 264−274. Chen X Q, Zeng Z, Yu H M, et al. High precision analytical method for stable strontium isotopes[J]. Geological Journal of China Universities, 2021, 27(3): 264−274. |
[28] | 万丹, 陈玖斌, 张婷, 等. 镉同位素分馏及其在示踪土壤镉来源和迁移转化过程中的应用进展[J]. 岩矿测试, 2022, 41(3): 341-352. Wan D, Chen J B, Zhang T, Cadmium isotope fractionation and its applications in tracing the source and fate of cadmium in the oil: A review[J]. Rock and Mineral Analysis, 2022, 41(3): 341-352. |
[29] | 张卓盈, 马金龙, 张乐, 等. 铷同位素分析方法及研究进展[J]. 地学前缘, 2020, 27(3): 123−132. Zhang Z Y, Ma J L, Zhang L, et al. Advances in rubidium isotope analysis method and applications in geological studies[J]. Earth Science Frontiers, 2020, 27(3): 123−132. |
[30] | 杨林, 石震, 于慧敏, 等. 多接收电感耦合等离子体质谱法测定岩石和土壤等国家标准物质的硅同位素组成[J]. 岩矿测试, 2023, 42(1): 136−145. Yang L, Shi Z, Yu H M, et al. Determination of silicon isotopic compositions of rock and soil reference materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(1): 136−145. |
[31] | Nielsen S G, Prytulak J, Halliday A N J G, et al. Determination of precise and accurate 51V/50V isotope ratios by MC‐ICP‐MS. Part 1: Chemical separation of vanadium and mass spectrometric protocols[J]. Geostandards and Geoanalytical Research, 2011, 35(3): 293−306. doi: 10.1111/j.1751-908X.2011.00106.x |
[32] | Prytulak J, Nielsen S G, Halliday A N J G, et al. Determination of precise and accurate 51V/50V isotope ratios by multi‐collector ICP‐MS. Part 2: Isotopic composition of six reference materials plus the allende chondrite and verification tests[J]. Geostandards and Geoanalytical Research, 2011, 35(3): 307−318. doi: 10.1111/j.1751-908X.2011.00105.x |
[33] | 赵博, 朱建明, 秦海波, 等. 锑同位素测试方法及其应用研究[J]. 矿物岩石地球化学通报, 2018, 37(6): 1181−1189. Zhao B, Zhu J M, Qin H B, et al. Research progress in measurement and application of antimony isotope[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(6): 1181−1189. |
[34] | 陈娟, 唐红峰, 王宁, 等. W同位素分析方法进展及全岩样品的消解研究[J]. 矿物岩石, 2013, 33(3): 86−92. Chen J, Tang H F, Wang N, et al. Progress in analytical methods of tungsten isotope and experimental research on digestion of whole rock samples[J]. Mineralogy and Petrology, 2013, 33(3): 86−92. |
[35] | 辛晓莹, 张天睿, 颜妍. 基于MC-ICP-MS测定水中铀同位素比值的富集方式对比研究[J]. 铀矿地质, 2022, 38(3): 537−544. Xin X Y, Zhang T R, Yan Y. Comparative study on enrichment methods for the determination of uranium isotope ratio in water by MC-ICP-MS[J]. Uranium Geology, 2022, 38(3): 537−544. |
[36] | 韦刚健, 黄方, 马金龙, 等. 近十年我国非传统稳定同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2022, 41(1): 1−44, 223. Wei G J, Huang F, Ma J L, et al. Progress of non-traditional stable isotope geochemistry of the past decade in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(1): 1−44, 223. |
[37] | Zhang Z, Ma J, Zhang L, et al. Rubidium purification via a single chemical column and its isotope measurement on geological standard materials by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 322−328. doi: 10.1039/C7JA00406K |
[38] | Zhu H L, Zhang Z F, Wang G Q, et al. Calcium isotopic fractionation during ion-exchange column chemistry and thermal ionisation mass spectrometry (TIMS) determination[J]. Geostandards and Geoanalytical Research, 2016, 40(2): 185−194. doi: 10.1111/j.1751-908X.2015.00360.x |
[39] | Davies C. Determination of distribution coefficients for cation exchange resin and optimisation of ion exchange chromatography for chromium separation for geological materials[D]. Manchester: The University of Manchester, 2012: 20-43. |
[40] | Li H, Tissot F L H, Lee S G, et al. Distribution coefficients of the REEs, Sr, Y, Ba, Th, and U between α-HIBA and AG50W-X8 resin[J]. ACS Earth and Space Chemistry, 2020, 5(1): 55−65. |
[41] | Pourmand A, Dauphas N J T. Distribution coefficients of 60 elements on TODGA resin: Application to Ca, Lu, Hf, U and Th isotope geochemistry[J]. Talanta, 2010, 81(3): 741−753. doi: 10.1016/j.talanta.2010.01.008 |
[42] | Rouxel O J, Luais B. Germanium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 601−656. doi: 10.2138/rmg.2017.82.14 |
[43] | Dellinger M, Hilton R G, Nowell G M. Measurements of rhenium isotopic composition in low-abundance samples[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(2): 377−387. doi: 10.1039/C9JA00288J |
[44] | Miller C A, Peucker-Ehrenbrink B, Ball L. Precise determination of rhenium isotope composition by multi-collector inductively-coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(8): 1069−1078. doi: 10.1039/b818631f |
[45] | Liu J, Chen J, Zhang T, et al. Chromatographic purification of antimony for accurate isotope analysis by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(7): 1360−1367. doi: 10.1039/D0JA00136H |
[46] | Hu X, Nan X Y, Yu H M, et al. High precision Rb isotope measurements by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(12): 2744−2755. doi: 10.1039/D1JA00315A |
[47] | Huang C, Gu H O, Sun H, et al. High-precision determination of stable potassium and magnesium isotopes utilizing single column separation and multicollector inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2021, 181: 106232. doi: 10.1016/j.sab.2021.106232 |
Distribution coefficients (Kd) for duplicate samples in 0.5 and 6mol/L nitric acid using AG® 50W-X8 resin, the distribution coefficients of the element in two parallel experiments are close to the 1∶1 fitting line, except for Th, Hf and Te.
Time of element exchange equilibrium between AG®50W-X8 cation exchange resin and 0.5mol/L nitric acid. Most elements reached equilibrium before 10min, while Al and V needed longer time to reach equilibrium, which were 2h and 8h, respectively.
Element partition coefficients on AG®50W-X8 cation exchange resin in (a) 0.1-6mol/L nitric acid medium and (b) 0.1-6mol/L hydrochloric acid medium (The ordinate is logarithmic, where the dashed lines represent elements that do not adsorb in the resin)
Element distribution coefficients of AG®50W-X8 cation exchange resin in (a) 0.1-6mol/L nitric acid and 0.2mol/L hydrofluoric acid medium; and in (b) 0.1-6mol /L hydrochloric acid and 0.2mol/L hydrofluoric acid medium