Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 1
Article Contents

ZHAO Linghao, SUN Dongyang, HU Mingyue, YUAN Jihai, FAN Chenzi, ZHAN Xiuchun. Simultaneous Determination of U-Pb Age and Trace Elements of Zircon by Laser Ablation Sector Field Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2024, 43(1): 47-62. doi: 10.15898/j.ykcs.202309110151
Citation: ZHAO Linghao, SUN Dongyang, HU Mingyue, YUAN Jihai, FAN Chenzi, ZHAN Xiuchun. Simultaneous Determination of U-Pb Age and Trace Elements of Zircon by Laser Ablation Sector Field Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2024, 43(1): 47-62. doi: 10.15898/j.ykcs.202309110151

Simultaneous Determination of U-Pb Age and Trace Elements of Zircon by Laser Ablation Sector Field Inductively Coupled Plasma-Mass Spectrometry

  • Laser ablation sector field inductively coupled plasma-mass spectrometry (LA-SF-ICP-MS) is widely applied in U-Pb dating of zircon due to its remarkable sensitivity. However, the utilization of a magnetic sector mass analyzer imposes constraints on its scanning speeds, potentially affecting the concurrent acquisition of U-Pb isotopes and other trace elements. Here a method for simultaneous zircon U-Pb dating and key trace elements quantifying by LA-SF-ICP-MS were developed. Seven zircon U-Pb standard samples were measured to assess the method's feasibility. Experimental data indicate that simultaneous collection of U-Pb isotopes and other trace elements may decrease signal stability, particularly for low-content isotopes like 207Pb, which in turn leads to an increased age uncertainty and dispersion for single analyses. However, the accuracy of the concordance age and weighted mean 206Pb/238U age of each sample, and the statistical results of all data points, are not affected significantly. Compared to TIMS ages, the discordance in these ages across all samples remains below 1.0% and 0.7%, respectively, meeting the requirements of U-Pb geological dating. Furthermore, the determination of key trace elements in zircon samples shows relative errors to recommended values of less than 10%. LA-SF-ICP-MS can accurately determine both zircon U-Pb ages and trace element contents simultaneously. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202309110151.

  • 加载中
  • [1] Engi M. Petrochronology based on REE-minerals: Monazite, allanite, xenotime, apatite[J]. Reviews in Mineralogy and Geochemistry, 2017, 83(1): 365−418. doi: 10.2138/rmg.2017.83.12

    CrossRef Google Scholar

    [2] 赵令浩, 詹秀春, 曾令森, 等. 磷灰石LA-ICP-MS U-Pb定年直接校准方法研究[J]. 岩矿测试, 2022, 41(5): 744−753.

    Google Scholar

    Zhao L H, Zhan X C, Zeng L S, et al. Direct calibration method for LA-HR-ICP-MS apatite U-Pb dating[J]. Rock and Mineral Analysis, 2022, 41(5): 744−753.

    Google Scholar

    [3] Chew D M, Spikings R A. Apatite U-Pb thermochronology: A review[J]. Minerals, 2021, 11(10): 1095−1116. doi: 10.3390/min11101095

    CrossRef Google Scholar

    [4] 赵令浩, 曾令森, 詹秀春, 等. 榍石LA-SF-ICP-MS U-Pb定年及对结晶和封闭温度的指示[J]. 岩石学报, 2020, 36(10): 2983−2994. doi: 10.18654/1000-0569/2020.10.04

    CrossRef Google Scholar

    Zhao L H, Zeng L S, Zhan X C, et al. In situ U-Pb dating of titanite by LA-SF-ICP-MS and insights into titanite crystallization and closure temperature[J]. Acta Petrologica Sinica, 2020, 36(10): 2983−2994. doi: 10.18654/1000-0569/2020.10.04

    CrossRef Google Scholar

    [5] Luo T, Zhao H, Zhang W, et al. Non-matrix-matched analysis of U-Th-Pb geochronology of bastnäsite by laser ablation inductively coupled plasma mass spectrometry[J]. Science China: Earth Sciences, 2021, 64(4): 667−676. doi: 10.1007/s11430-020-9715-1

    CrossRef Google Scholar

    [6] Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27−62. doi: 10.2113/0530027

    CrossRef Google Scholar

    [7] Toscano M, Pascual E, Nesbitt R W, et al. Geochemical discrimination of hydrothermal and igneous zircon in the Iberian Pyrite Belt, Spain[J]. Ore Geology Reviews, 2014, 56: 301−311. doi: 10.1016/j.oregeorev.2013.06.007

    CrossRef Google Scholar

    [8] Rubatto D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1-2): 123−138. doi: 10.1016/S0009-2541(01)00355-2

    CrossRef Google Scholar

    [9] Pyle J, Spear F. Yttrium zoning in garnet: Coupling of major and accessory phases during metamorphic reactions[J]. American Mineralogist, 2003,88(4): 708.

    Google Scholar

    [10] Henrichs I A, Chew D M, O’Sullivan G J, et al. Trace element (Mn-Sr-Y-Th-REE) and U-Pb isotope systematics of metapelitic apatite during progressive greenschist- to amphibolite-facies barrovian metamorphism[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(8): 4103−4129. doi: 10.1029/2019GC008359

    CrossRef Google Scholar

    [11] O’Sullivan G, Chew D, Kenny G, et al. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews, 2020, 201: 103044. doi: 10.1016/j.earscirev.2019.103044

    CrossRef Google Scholar

    [12] Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 2005, 308(5723): 841−844. doi: 10.1126/science.1110873

    CrossRef Google Scholar

    [13] Hayden L A, Watson E B, Wark D A. A thermobarometer for sphene (titanite)[J]. Contributions to Mineralogy and Petrology, 2008, 155(4): 529−540. doi: 10.1007/s00410-007-0256-y

    CrossRef Google Scholar

    [14] Ballard J R, Palin J M, Campbell I H. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon: Application to porphyry copper deposits of Northern Chile[J]. Contributions to Mineralogy and Petrology, 2002, 144(3): 347−364. doi: 10.1007/s00410-002-0402-5

    CrossRef Google Scholar

    [15] Zeng L, Asimow P D, Saleeby J B. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source[J]. Geochimica et Cosmochimica Acta, 2005, 69(14): 3671−3682. doi: 10.1016/j.gca.2005.02.035

    CrossRef Google Scholar

    [16] Zeng L, Gao L E, Zhao L, et al. The role of titanite in shaping the geochemistry of amphibolite-derived melts[J]. Lithos, 2021, 402-403: 106312. doi: 10.1016/j.lithos.2021.106312

    CrossRef Google Scholar

    [17] 赵令浩, 曾令森, 胡明月, 等. 金红石-榍石转变过程中元素地球化学行为——以雅鲁藏布江缝合带角闪岩为例[J]. 岩石学报, 2017, 33(8): 2494−2508.

    Google Scholar

    Zhao L H, Zeng L S, Hu M Y, et al. Rutile to titanite trasformation in amphibolite and its geochemical consequences: A case study of the amphibolite from Yarlung Tsangpo suture zone[J]. Acta Petrologica Sinica, 2017, 33(8): 2494−2508.

    Google Scholar

    [18] 赵令浩, 曾令森, 高利娥, 等. 变基性岩部分熔融过程中榍石的微量元素效应: 以南迦巴瓦混合岩为例[J]. 岩石学报, 2020, 36(9): 2714−2728. doi: 10.18654/1000-0569/2020.09.07

    CrossRef Google Scholar

    Zhao L H, Zeng L S, Gao L E, et al. Role of titanite in the redistribution of key trace elements during partial melting of meta-mafic rocks: An example from Namche Barwa migmatite[J]. Acta Petrologica Sinica, 2020, 36(9): 2714−2728. doi: 10.18654/1000-0569/2020.09.07

    CrossRef Google Scholar

    [19] Zhao L, Zeng L, Gao L, et al. Rutile to titanite transformation in eclogites and its geochemical consequences: An example from the Sumdo Eclogite, Tibet[J]. Acta Geologica Sinica-English Edition, 2023, 97(1): 122−133. doi: 10.1111/1755-6724.14919

    CrossRef Google Scholar

    [20] Engi M, Lanari P, Kohn M. Significant ages—An introduction to petrochronology[J]. Reviews in Mineralogy and Geochemistry, 2017, 83(1): 1−12.

    Google Scholar

    [21] Wei Q D, Yang M, Romer R L, et al. In situ U-Pb geochronology of vesuvianite by LA-SF-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(1): 69−81. doi: 10.1039/D1JA00303H

    CrossRef Google Scholar

    [22] Seman S, Stockli D F, McLean N M. U-Pb geochronology of grossular-andradite garnet[J]. Chemical Geology, 2017, 460: 106−116. doi: 10.1016/j.chemgeo.2017.04.020

    CrossRef Google Scholar

    [23] Woodhead J, Petrus J. Exploring the advantages and limitations of in situ U-Pb carbonate geochronology using speleothems[J]. Geochronology, 2019, 1: 69−84. doi: 10.5194/gchron-1-69-2019

    CrossRef Google Scholar

    [24] Li D, Tan C, Miao F, et al. Initiation of Zn-Pb mineralization in the Pingbao Pb-Zn skarn district, South China: Constraints from U-Pb dating of grossular-rich garnet[J]. Ore Geology Reviews, 2019, 107: 587−599. doi: 10.1016/j.oregeorev.2019.03.011

    CrossRef Google Scholar

    [25] Yang Y H, Wu F Y, Yang J H, et al. U-Pb age determination of schorlomite garnet by laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 231−239. doi: 10.1039/C7JA00315C

    CrossRef Google Scholar

    [26] Kylander-Clark A R C, Hacker B R, Cottle J M. Laser-ablation split-stream ICP petrochronology[J]. Chemical Geology, 2013, 345: 99−112. doi: 10.1016/j.chemgeo.2013.02.019

    CrossRef Google Scholar

    [27] Hattendorf B, Latkoczy C, Günther D. Peer reviewed: Laser ablation-ICPMS[J]. Analytical Chemistry, 2003, 75(15): 341A−347A. doi: 10.1021/ac031283r

    CrossRef Google Scholar

    [28] Kooijman E, Berndt J, Mezger K. U-Pb dating of zircon by laser ablation ICP-MS: Recent improvements and new insights[J]. European Journal of Mineralogy, 2012, 24: 5−21. doi: 10.1127/0935-1221/2012/0024-2170

    CrossRef Google Scholar

    [29] Wu S, Yang M, Yang Y, et al. Improved in situ zircon U-Pb dating at high spatial resolution (5-16μm) by laser ablation-single collector-sector field-ICP-MS using jet sample and X skimmer cones[J]. International Journal of Mass Spectrometry, 2020, 456: 116394. doi: 10.1016/j.ijms.2020.116394

    CrossRef Google Scholar

    [30] Roberts N M W, Rasbury E T, Parrish R R, et al. A calcite reference material for LA-ICP-MS U-Pb geochronology[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2807−2814. doi: 10.1002/2016GC006784

    CrossRef Google Scholar

    [31] Latkoczy C, Günther D. Enhanced sensitivity in inductively coupled plasma sector field mass spectrometry for direct solid analysis using laser ablation (LA-ICP-SFMS)[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(10): 1264−1270. doi: 10.1039/B204532J

    CrossRef Google Scholar

    [32] Wiedenbeck M, Allé P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 1995, 19(1): 1−23. doi: 10.1111/j.1751-908X.1995.tb00147.x

    CrossRef Google Scholar

    [33] Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211: 47−69. doi: 10.1016/j.chemgeo.2004.06.017

    CrossRef Google Scholar

    [34] Hu Z, Li X H, Luo T, et al. Tanz zircon megacrysts: A new zircon reference material for the microbeam determination of U-Pb ages and Zr-O isotopes[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(12): 2715−2734. doi: 10.1039/D1JA00311A

    CrossRef Google Scholar

    [35] Huang C, Wang H, Yang J H, et al. SA01—A proposed zircon reference material for microbeam U-Pb age and Hf-O isotopic determination[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 103−123. doi: 10.1111/ggr.12307

    CrossRef Google Scholar

    [36] Black L P, Kamo S L, Allen C M, et al. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology[J]. Chemical Geology, 2003, 200(1): 155−170.

    Google Scholar

    [37] Sláma J, Košler J, Condon D J, et al. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1-2): 1−35. doi: 10.1016/j.chemgeo.2007.11.005

    CrossRef Google Scholar

    [38] 李献华, 唐国强, 龚冰, 等. Qinghu(清湖)锆石: 一个新的U-Pb年龄和O, Hf同位素微区分析工作标样[J]. 科学通报, 2013, 58(20): 1954−1961. doi: 10.1360/csb2013-58-20-1954

    CrossRef Google Scholar

    Li X H, Tang G Q, Gong B, et al. Qinghu zircon: A working reference for microbeam analusis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin, 2013, 58(20): 1954−1961. doi: 10.1360/csb2013-58-20-1954

    CrossRef Google Scholar

    [39] Horn I, Günther D. The influence of ablation carrier gasses Ar, He and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols: Implications for LA-ICP-MS[J]. Applied Surface Science, 2003, 207(1-4): 144−157. doi: 10.1016/S0169-4332(02)01324-7

    CrossRef Google Scholar

    [40] Hu Z, Gao S, Liu Y, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1093−1101. doi: 10.1039/b804760j

    CrossRef Google Scholar

    [41] Griffin W, Powell W, Pearson N J, et al. GLITTER: Data reduction software for laser ablation ICP-MS[M]//Sylvester P. Laser ablation-ICP-MS in the Earth sciences. Mineralogical Association of Canada, 2008: 204-207.

    Google Scholar

    [42] Ludwig K R. User’s manual for Isoplot 3.6: A geochronological toolkit for Microsoft excel[M]. Berkeley Geochronology Center, 2003.

    Google Scholar

    [43] 李献华, 柳小明, 刘勇胜, 等. LA-ICPMS锆石U-Pb定年的准确度: 多实验室对比分析[J]. 中国科学: 地球科学, 2015, 45(9): 1294-1303.

    Google Scholar

    Li X H, Liu X M, Liu Y S, et al. Accuracy of LA-ICPMS zircon U-Pb age determination: An inter-laboratory comparison[J]. Science China: Earth Sciences, 2015, 58: 1722-1730.

    Google Scholar

    [44] Horstwood M, Košler J, Gehrels G, et al. Community-derived standards for LA-ICP-MS U-(Th)-Pb geochronology—Uncertainty propagation, age interpretation and data reporting[J]. Geostandards and Geoanalytical Research, 2016, 40(3): 311−332. doi: 10.1111/j.1751-908X.2016.00379.x

    CrossRef Google Scholar

    [45] Fisher C, Longerich H, Jackson S, et al. Data acquisition and calculation of U-Pb isotopic analyses using laser ablation (single collector) inductively coupled plasma mass sperometry[J]. Journal of Analytical Atomic Spectrometry, 2010, 25: 1905−1920. doi: 10.1039/c004955g

    CrossRef Google Scholar

    [46] Schoene B, Condon D, Morgan L, et al. Precision and accuracy in geochronology[J]. Ekements, 2013, 9: 19−24.

    Google Scholar

    [47] Liu Y, Hu Z, Zong K, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535−1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [48] Wiedenbeck M, Hanchar J M, Peck W H, et al. Further characterisation of the 91500 zircon crystal[J]. Geostandards and Geoanalytical Research, 2004, 28(1): 9−39. doi: 10.1111/j.1751-908X.2004.tb01041.x

    CrossRef Google Scholar

    [49] Zhao K D, Jiang S Y, Ling H F, et al. Reliability of LA-ICP-MS U-Pb dating of zircons with high U concentrations: A case study from the U-bearing Douzhashan granite in South China[J]. Chemical Geology, 2014, 389: 110−121. doi: 10.1016/j.chemgeo.2014.09.018

    CrossRef Google Scholar

    [50] Marillo-Sialer E, Woodhead J, Hanchar J M, et al. An investigation of the laser-induced zircon ‘matrix effect’[J]. Chemical Geology, 2016, 438: 11−24. doi: 10.1016/j.chemgeo.2016.05.014

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(734) PDF downloads(122) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint