Citation: | LAN Jianmei, JIANG Tao, MEI Jinhua, TANG Hui, HUANG Wenzhi. Characterization and causes of interannual variation of antimony contamination in groundwater of a typical antimony mining area[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 192-202. doi: 10.16030/j.cnki.issn.1000-3665.202302052 |
Heavy metal pollution is a prominent problem in the antimony mining area of Xikuangshan in central Hunan. In recent years, integrated waste remediation and ecological restoration projects have been vigorously implemented in mining areas, but the effectiveness of groundwater pollution remediation is unknown. Groundwater samples collected from the antimony mining area for 10 consecutive years from 2013 to 2022 are used to systematically study the chemical characteristics of groundwater, the inter-annual variation characteristics of antimony pollution, and the sources and pathways of antimony contamination by the hydrochemistry analysis, ion correlation analysis, and geostatistics. The results show that (1) the HCO3·SO4—Ca type is the main hydrochemical type of groundwater in Xikuangshan, and the formation process of chemical components in the groundwater is controlled by solid waste leaching and salt rock dissolution. (2) Three aquifers in the mining area are contaminated with antimony to different degrees, especially the Shetianqiao Formation aquifer, with an average antimony concentration of 7.139 mg/L, which is significantly affected by the oxidation of pyroxene. The sources of antimony in the Xikuangshan Formation and the Lower Carbonifer aquifer are mainly controlled by the leaching of solid waste such as tailings and waste rocks. (3) The average value of antimony mass concentration in groundwater in the Shetianqiao Formation aquifer varies greatly during the 10 years. From 2013 to 2015, the average value of antimony concentration was 13.31 mg/L, decreasing year by year. From 2016 to 2018, the average value of antimony concentration is 7.28 mg/L, increasing slightly year by year. From 2019 to 2022 the average value of antimony concentration is 6.06 mg/L, with an overall decreasing trend. Analysis shows that the ecological environment in the mining area is gradually improving. This study will provide a scientific basis for assessment of the effectiveness of the implementation of ecological restoration projects in mining areas, as well as the prevention and control of heavy metal pollution in mining areas.
[1] |
温冰. 湖南锡矿山水环境中锑来源及迁移转化的多元同位素解析[D]. 武汉:中国地质大学,2017. [WEN Bing. Implications of isotope for sources,migration and transformation of antimony in the water environment of the Xikuangshan,Hunan[D]. Wuhan:China University of Geosciences,2017. (in Chinese with English abstract)
|
[2] | FRENGSTAD B,MIDTGÅRD SKREDE A K,BANKS D,et al. The chemistry of Norwegian groundwaters:III. The distribution of trace elements in 476 crystalline bedrock groundwaters,as analysed by ICP-MS techniques[J]. Science of the Total Environment,2000,246(1):21 − 40. doi: 10.1016/S0048-9697(99)00413-1 |
[3] | LAHERMO P,TARVAINEN T,HATAKKA T,et al. One thousand wells-the physical-chemical quality of finnish well waters in 1999[M]. Espoo:Geological Survey of Finland,2002:257−261. |
[4] | REIMANN C,BJORVATN K,FRENGSTAD B,et al. Drinking water quality in the Ethiopian section of the East African Rift Valley I—data and health aspects[J]. Science of the Total Environment,2003,311(1/2/3):65 − 80. |
[5] |
贺军. 吉林省靖宇县天然矿泉水及其周围环境微量元素含量的现况调查[D]. 长春:吉林大学,2013. [HE Jun. The cross-sectional investigation on trace element content of natural mineral water and surroundings in Jingyu County of Jilin Province[D]. Changchun:Jilin University,2013. (in Chinese with English abstract)
|
[6] |
付鹏宇,梁杏,常致凯,等. 资水尾闾地下水Sb含量分布及来源[J/OL]. 地球科学,(2022-04-15)[2023-02-11]. https://kns.cnki.net/kcms/detail/42.1874.P.20220414.1419.032.html. [FU Pengyu,LIANG Xing,CHANG Zhikai,et al. Antimony concentration and distribution in groundwater of Zi River estuary and source analysis[J/OL]. Earth Science,(2022-04-15)[2023-02-11]. (in Chinese with English abstract)
|
[7] | FU Zhiyou,WU Fengchang,MO Changli,et al. Comparison of arsenic and antimony biogeochemical behavior in water,soil and tailings from Xikuangshan,China[J]. Science of the Total Environment,2016,539:97 − 104. doi: 10.1016/j.scitotenv.2015.08.146 |
[8] | NIEDZIELSKI P,SIEPAK J,SIEPAK M. Total content of arsenic,antimony and selenium in groundwater samples from western Poland[J]. Polish Journal of Environmental Studies,2001,10(5):347 − 350. |
[9] | AKSOY N,ŞIMŞEK C,GUNDUZ O. Groundwater contamination mechanism in a geothermal field:A case study of Balcova,Turkey[J]. Journal of Contaminant Hydrology,2009,103(1/2):13 − 28. |
[10] | FILELLA M,BELZILE N,CHEN Yuwei. Antimony in the environment:A review focused on natural waters[J]. Earth-Science Reviews,2002,57(1/2):125 − 176. |
[11] |
丁建华,杨毅恒,邓凡. 中国锑矿资源潜力及成矿预测[J]. 中国地质,2013,40(3):846 − 858. [DING Jianhua,YANG Yiheng,DENG Fan. Resource potential and metallogenic prognosis of antimony deposits in China[J]. Geology in China,2013,40(3):846 − 858. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3657.2013.03.016
|
[12] |
王修,王建平,刘冲昊,等. 我国锑资源形势分析及可持续发展策略[J]. 中国矿业,2014,23(5):9 − 13. [WANG Xiu,WANG Jianping,LIU Chonghao,et al. Situation analysis and sustainable development strategy of antimony resources in China[J]. China Mining Magazine,2014,23(5):9 − 13. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-4051.2014.05.004
|
[13] | HE Mengchang,WANG Xiangqin,WU Fengchang,et al. Antimony pollution in China[J]. Science of the Total Environment,2012,421/422:41 − 50. doi: 10.1016/j.scitotenv.2011.06.009 |
[14] | ROUTH J,IKRAMUDDIN M. Trace-element geochemistry of Onion Creek near Van Stone lead-zinc mine (Washington,USA)—chemical analysis and geochemical modeling[J]. Chemical Geology,1996,133(1/2/3/4):211 − 224. |
[15] | MILHAM L,CRAW D. Antimony mobilization through two contrasting gold ore processing systems,New Zealand[J]. Mine Water and the Environment,2009,28(2):136 − 145. doi: 10.1007/s10230-009-0071-y |
[16] | HILLER E,LALINSKÁ B,CHOVAN M,et al. Arsenic and antimony contamination of waters,stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians,Slovakia[J]. Applied Geochemistry,2012,27(3):598 − 614. doi: 10.1016/j.apgeochem.2011.12.005 |
[17] | FLAKOVA R,ZENISOVA Z,SRACEK O,et al. The behavior of arsenic and antimony at Pezinok mining site,southwestern part of the Slovak Republic[J]. Environmental Earth Sciences,2012,66(4):1043 − 1057. doi: 10.1007/s12665-011-1310-7 |
[18] | HE Mengchang,YANG Jurong. Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue[J]. Science of the Total Environment,1999,243/244:149 − 155. doi: 10.1016/S0048-9697(99)00370-8 |
[19] |
国家市场监督管理总局,国家标准化管理委员会. 生活饮用水卫生标准:GB 5749—2022[S]. 北京:中国标准出版社,2022. [State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Standards for drinking water quality:GB 5749—2022[S]. Beijing:Standards Press of China,2022. (in Chinese)
|
[20] | ZHOU Jianwei,NYIRENDA M T,XIE Lina,et al. Mine waste acidic potential and distribution of antimony and arsenic in waters of the Xikuangshan Mine,China[J]. Applied Geochemistry,2017,77:52 − 61. doi: 10.1016/j.apgeochem.2016.04.010 |
[21] | HAO Chunming,LIU Min,PENG Yingao,et al. Comparison of antimony sources and hydrogeochemical processes in shallow and deep groundwater near the xikuangshan mine,Hunan Province,China[J]. Mine Water and the Environment,2022,41(1):194 − 209. doi: 10.1007/s10230-021-00833-8 |
[22] |
李小倩,张彬,周爱国,等. 酸性矿山废水对合山地下水污染的硫氧同位素示踪[J]. 水文地质工程地质,2014,41(6):103 − 109. [LI Xiaoqian,ZHANG Bin,ZHOU Aiguo,et al. Using sulfur and oxygen isotopes of sulfate to track groundwater contamination from coal mine drainage in Heshan[J]. Hydrogeology & Engineering Geology,2014,41(6):103 − 109. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2014.06.019
|
[23] |
黄艳超,武雪芳,周羽化,等. 水环境中锑污染及其修复技术研究进展[J]. 南京师大学报(自然科学版),2015,38(4):122 − 128. [HUANG Yanchao,WU Xuefang,ZHOU Yuhua,et al. Research progress of antimony contamination in water environment and remediation techniques[J]. Journal of Nanjing Normal University (Natural Science Edition),2015,38(4):122 − 128. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4616.2015.04.022
|
[24] |
吴文晖,邹辉,朱岗辉,等. 湘中某矿区地下水重金属污染特征及健康风险评估[J]. 生态与农村环境学报,2018,34(11):1027 − 1033. [WU Wenhui,ZOU Hui,ZHU Ganghui,et al. Heavy metal pollution characteristics and health risk assessment of groundwater of a mine area in central Hunan[J]. Journal of Ecology and Rural Environment,2018,34(11):1027 − 1033. (in Chinese with English abstract) doi: 10.11934/j.issn.1673-4831.2018.11.010
|
[25] |
文世新,胡正全,陈湘立,等. 湖南省冷水江市锡矿山锑矿区地质勘查与水文地质调查报告[R]. 长沙:中国有色金属长沙勘察设计研究院有限公司,2021. [WEN Shixin,HU Zhengquan,CHEN Xiang Li,et al. Geological exploration and hydrogeological survey report of tin mine antimony mining area in Lengshuijiang City,Hunan Province[R]. Changsha:China Nonferrous Metal Changsha Survey and Design Institute Co. LTD. ,2021. (in Chinese with English abstract)
|
[26] |
中华人民共和国自然资源部. 地下水质分析方法 第2部分:水样的采集和保存:DZ/T 0064.2—2021[S]. [Ministry of Natural Resources of the People’s Republic of China. Methods for analysis of underground water quality Part 2: Collection and preservation of water samples:DZ/T 0064.2—2021[S]. (in Chinese)
|
[27] |
中华人民共和国环境保护部. 水质 32元素的测定 电感耦合等离子体发射光谱法:HJ 776—2015[S]. 北京:中国环境科学出版社,2015. [Ministry of Environmental Protection of the People’s Republic of China. Water quality-Determination of 32 elements-Inductively coupled plasma optical emission spectrometry:HJ 776—2015[S]. Beijing:China Environmental Science Press,2015 (in Chinese)
|
[28] |
中华人民共和国环境保护部. 水质无机阴离子(F−、Cl−、 ${{\rm{NO}}_2^- }$、Br−、 ${{\rm{NO}}_3^- } $、 ${{\rm{PO}}_4^3} $、 ${{\rm{SO}}_3^{ 2-}} $、 ${{\rm{SO}}_4^{ 2-}} $)的测定 离子色谱法:HJ 84—2016[S]. 北京:中国环境科学出版社,2015. [Ministry of Environmental Protection of the People's Republic of China. Water quality-Determination of inorangic anions(F−、Cl−、 ${{\rm{NO}}_2^-} $、Br−、 ${{\rm{NO}}_3^- } $、 ${{\rm{PO}}_4^3} $、 ${{\rm{SO}}_3^{ 2-}} $、 ${{\rm{SO}}_4^{ 2-}} $)-ion chromatography:HJ 84—2016[S]. Beijing:China Environmental Science Press,2016 (in Chinese)
|
[29] |
中华人民共和国自然资源部. 地下水质分析方法 第49部分:碳酸根、重碳酸根和氢氧根离子的测定 滴定法:DZ/T 0064.2—2021[S]. [Ministry of Natural Resources of the People’s Republic of China.Methods for analysis of groundwater quality—Part 49:Determination of carbonate,bicarbonate ions,hydroxy—Titration:DZ/T 0064.2—2021[S]. (in Chinese)
|
[30] |
中华人民共和国自然资源部. 《地下水质分析方法 第64部分:硫酸盐的测定 乙二胺四乙酸二钠—钡滴定法:DZ/T 0064.64—2021[S]. [Ministry of Natural Resources of the People’s Republic of China. Methods for analysis of groundwater quality—Part 64:Determination of sulfate—EDTA-barium titration:DZ/T 0064.64—2021[S]. (in Chinese)
|
[31] |
李琬钰,周建伟,贾晓岑,等. 湖南锡矿山锑矿区水环境中DOM三维荧光特征及其对锑污染的指示意义[J]. 地质科技通报,2022,41(4):215 − 224. [LI Wanyu,ZHOU Jianwei,JIA Xiaocen,et al. EEMs characteristics of dissolved organic matter in water environment and its implications for antimony contamination in antimony mine of Xikuangshan,Hunan Province[J]. Bulletin of Geological Science and Technology,2022,41(4):215 − 224. (in Chinese with English abstract)
|
[32] |
谢李娜,周建伟,郝春明,等. 湘中锡矿山北矿区地下水化学特征及污染成因[J]. 地质科技情报,2016,35(2):197 − 202. [XIE Lina,ZHOU Jianwei,HAO Chunming,et al. Hydrochemical characteristics and contaminative causes of groundwater in the north area of Xikuangshan antimony mine,Hunan Province[J]. Geological Science and Technology Information,2016,35(2):197 − 202. (in Chinese with English abstract)
|
[33] | SUN Ximeng,LI Yi,LIU Chao,et al. Morphological distribution and formation mechanisms of antimony in the shallow groundwater of the xikuangshan antimony mine in Hunan,China[J]. Frontiers in Environmental Science,2022,10:950096. doi: 10.3389/fenvs.2022.950096 |
[34] |
李建胜,梁汉青. 冷水江市锡矿山地区砷碱渣综合利用处理对策研究[J]. 湖南有色金属,2010,26(5):53 − 55. [LI Jiansheng,LIANG Hanqing. Treatment strategies study on the comprehensive utilization of arsenic-alkali residue in Xikuangshan area[J]. Hunan Nonferrous Metals,2010,26(5):53 − 55. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-5540.2010.05.016
|
Hydrogeological map of the study area and location of groundwater sampling points
Piper diagram of groundwater chemistry in the study area
Inter-annual variation of Sb concentrations in groundwater of different aquifers
Correlation analysis of conventional ions in the study area
Correlation between Sb and conventional ions in groundwater of different aquifers
Inter-annual variation trend of Sb,