2023 Vol. 50, No. 5
Article Contents

LI Ran, ZHOU Jianwei, SU Danhui, ZHENG Xiaoming, CHEN Feng, ZHANG Peng. Distribution characteristics of temperature field and humidity field in the unsaturated zone of fractured rock mass and their ecological significance[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 203-211. doi: 10.16030/j.cnki.issn.1000-3665.202210034
Citation: LI Ran, ZHOU Jianwei, SU Danhui, ZHENG Xiaoming, CHEN Feng, ZHANG Peng. Distribution characteristics of temperature field and humidity field in the unsaturated zone of fractured rock mass and their ecological significance[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 203-211. doi: 10.16030/j.cnki.issn.1000-3665.202210034

Distribution characteristics of temperature field and humidity field in the unsaturated zone of fractured rock mass and their ecological significance

More Information
  • Exploitation of mineral resources and construction of traffic facilities have led to the destruction of a large number of mountains, resulting in the formation of high and steep rock slopes, which have caused serious geological safety hazards and ecological function degradation. The ecological restoration of high and steep rock slopes is imperative. The key of slope ecological restoration is vegetation reconstruction. At present, there are still many problems such as lack of restoration theory and unclear reconstruction conditions. In order to clarify the relationship between the temperature and humidity fields and the plant growth in the rock slope, this study established a test site near Xiaodongshan in the city of Zhangqiu in Shandong Province. Multi-period monitoring experiments on the temperature and humidity field in the rock slope were carried out, the distribution characteristics of the temperature and humidity field in the rock slope are examined, and their ecological significance is analyzed in detail. The results show that (1) the atmospheric temperature causes the difference of the temperature variation in the monitoring hole in different seasons. In winter, the heat in the unsaturated zone of fractured rock mass is transferred from deep layer to surface layer, but in spring and summer it is opposite, The depth of the variable temperature zone ranges from 0 − 467 cm, and the depth of the constant temperature zone is greater than 467 cm. (2) In winter, the relative humidity in the slope first increases and then decreases with the increasing depth. In spring and summer, the relative humidity in the slope increases gradually with the increasing depth. (3) The water vapor saturated zone appears near the depth of 20 cm in winter, and begins to appear at the depth of 20 − 40 cm in summer and extends deeper. (4) The temperature and humidity in the rock mass are suitable for the growth of plants, and the plants are easier to survive if they are planted near the depth of 20 cm in spring. The results are of has important theoretical significance and application value for guiding the ecological restoration of rock slopes.

  • 加载中
  • [1] 夏冬,李富平,袁雪涛,等. 露天矿岩质边坡生态重建技术研究现状及发展趋势[J]. 金属矿山,2018(1):1 − 10. [XIA Dong,LI Fuping,YUAN Xuetao,et al. Research situation of ecological rehabilitation technology in rock open-pit mine and its developing trend[J]. Metal Mine,2018(1):1 − 10. (in Chinese with English abstract) doi: 10.19614/j.cnki.jsks.201801001

    CrossRef Google Scholar

    XIA Dong, LI Fuping, YUAN Xuetao, et al. Research situation of ecological rehabilitation technology in rock open-pit mine and its developing trend[J]. Metal Mine, 20181): 110. (in Chinese with English abstract) doi: 10.19614/j.cnki.jsks.201801001

    CrossRef Google Scholar

    [2] MAHDAVI S M,NEYSHABOURI M R,FUJIMAKI H. Water vapour transport in a soil column in the presence of an osmotic gradient[J]. Geoderma,2018,315:199 − 207. doi: 10.1016/j.geoderma.2017.11.031

    CrossRef Google Scholar

    [3] HEDAYATI-DEZFOOLI M,LEONG W H. An experimental study of coupled heat and moisture transfer in soils at high temperature conditions for a medium coarse soil[J]. International Journal of Heat and Mass Transfer,2019,137:372 − 389. doi: 10.1016/j.ijheatmasstransfer.2019.03.131

    CrossRef Google Scholar

    [4] CARY J W. Soil moisture transport due to thermal gradients:Practical aspects[J]. Soil Science Society of America Journal,1996,30(4):428 − 433.

    Google Scholar

    [5] ROSE C W. Water transport in soil with a daily temperature wave. II. Analysis[J]. Soil Research,1968,6(1):45. doi: 10.1071/SR9680045

    CrossRef Google Scholar

    [6] 孙巍锋,常洲,兰恒星,等. 高寒阴湿区边坡浅层土体温湿响应规律研究[J]. 水文地质工程地质,2022,49(5):204 − 213. [SUN Weifeng,CHANG Zhou,LAN Hengxing,et al. The response regularity of temperature and humidity of surface soil on slopes in high-cold and humid areas[J]. Hydrogeology & Engineering Geology,2022,49(5):204 − 213. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202109057

    CrossRef Google Scholar

    SUN Weifeng, CHANG Zhou, LAN Hengxing, et al. The response regularity of temperature and humidity of surface soil on slopes in high-cold and humid areas[J]. Hydrogeology & Engineering Geology, 2022, 495): 204213. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202109057

    CrossRef Google Scholar

    [7] OLIVELLA S,GENS A. Vapour transport in low permeability unsaturated soils with capillary effects[J]. Transport in Porous Media,2000,40(2):219 − 241. doi: 10.1023/A:1006749505937

    CrossRef Google Scholar

    [8] 李建东,王旭,张延杰,等. 水蒸气增湿非饱和黄土热湿迁移规律研究[J]. 岩土力学,2021,42(1):186 − 192. [LI Jiandong,WANG Xu,ZHANG Yanjie,et al. Study of thermal moisture migration of unsaturated loess with water vapor[J]. Rock and Soil Mechanics,2021,42(1):186 − 192. (in Chinese with English abstract) doi: 10.16285/j.rsm.2020.0671

    CrossRef Google Scholar

    LI Jiandong, WANG Xu, ZHANG Yanjie, et al. Study of thermal moisture migration of unsaturated loess with water vapor[J]. Rock and Soil Mechanics, 2021, 421): 186192. (in Chinese with English abstract) doi: 10.16285/j.rsm.2020.0671

    CrossRef Google Scholar

    [9] 曹文炳,万力,陈康,等. 季节冻土对包气带水分迁移的影响[J]. 水文地质工程地质,2014,41(6):1 − 5. [CAO Wenbing,WAN Li,CHEN Kang,et al. Influence of seasonal frozen soil on moisture migration in the aerated zone[J]. Hydrogeology & Engineering Geology,2014,41(6):1 − 5. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2014.06.002

    CrossRef Google Scholar

    CAO Wenbing, WAN Li, CHEN Kang, et al. Influence of seasonal frozen soil on moisture migration in the aerated zone[J]. Hydrogeology & Engineering Geology, 2014, 416): 15. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2014.06.002

    CrossRef Google Scholar

    [10] LIU Feifei,MAO Xuesong,ZHANG Jianxun,et al. Isothermal diffusion of water vapor in unsaturated soils based on Fick’s second law[J]. Journal of Central South University,2020,27(7):2017 − 2031. doi: 10.1007/s11771-020-4427-6

    CrossRef Google Scholar

    [11] 袁进科,裴向军,程强,等. 川藏高速公路沿线温度变化规律与斜坡温度场-变形分析[J]. 公路交通科技,2019,36(10):33 − 42. [YUAN Jinke,PEI Xiangjun,CHENG Qiang,et al. Analysis on temperature variation regularity and slope temperature field-deformation along sichuan-tibet expressway[J]. Journal of Highway and Transportation Research and Development,2019,36(10):33 − 42. (in Chinese with English abstract)

    Google Scholar

    YUAN Jinke, PEI Xiangjun, CHENG Qiang, et al. Analysis on temperature variation regularity and slope temperature field-deformation along sichuan-tibet expressway[J]. Journal of Highway and Transportation Research and Development, 2019, 3610): 3342. (in Chinese with English abstract)

    Google Scholar

    [12] 李萌. 高温高湿气候下隧道洞口段围岩(衬砌)热湿应力分析[D]. 北京:北京交通大学,2016. [LI Meng. Thermal-moisture stress analysis of tunnel portal rock in high temperature and humidity[D]. Beijing:Beijing Jiaotong University,2016. (in Chinese with English abstract)

    Google Scholar

    LI Meng. Thermal-moisture stress analysis of tunnel portal rock in high temperature and humidity[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese with English abstract)

    Google Scholar

    [13] FRANK S,HEINZE T,POLLAK S,et al. Transient heat transfer processes in a single rock fracture at high flow rates[J]. Geothermics,2021,89:101989. doi: 10.1016/j.geothermics.2020.101989

    CrossRef Google Scholar

    [14] 高俊义. 裂隙参数对岩体水流-传热温度影响的数值模拟分析[J]. 水资源与水工程学报,2019,30(6):206 − 211. [GAO Junyi. Numerical simulation analysis of the influence of fracture parameters on water flow and heat transfer temperature in rock mass[J]. Journal of Water Resources and Water Engineering,2019,30(6):206 − 211. (in Chinese with English abstract)

    Google Scholar

    GAO Junyi. Numerical simulation analysis of the influence of fracture parameters on water flow and heat transfer temperature in rock mass[J]. Journal of Water Resources and Water Engineering, 2019, 306): 206211. (in Chinese with English abstract)

    Google Scholar

    [15] YAO Chi,SHAO Yulong,YANG Jianhua,et al. Effects of fracture density,roughness,and percolation of fracture network on heat-flow coupling in hot rock masses with embedded three-dimensional fracture network[J]. Geothermics,2020,87:101846. doi: 10.1016/j.geothermics.2020.101846

    CrossRef Google Scholar

    [16] 陈金龙,罗文行,窦斌,等. 涿鹿盆地三维多裂隙地质模型地温场数值模拟[J]. 地质科技通报,2021,40(3):22 − 33. [CHEN Jinlong,LUO Wenxing,DOU Bin,et al. Numerical simulation of geothermal field in a three-dimensional multi-fractured geological model of Zhuolu Basin[J]. Bulletin of Geological Science and Technology,2021,40(3):22 − 33. (in Chinese with English abstract)

    Google Scholar

    CHEN Jinlong, LUO Wenxing, DOU Bin, et al. Numerical simulation of geothermal field in a three-dimensional multi-fractured geological model of Zhuolu Basin[J]. Bulletin of Geological Science and Technology, 2021, 403): 2233. (in Chinese with English abstract)

    Google Scholar

    [17] 张延军,袁学兵,马跃强,等. 花岗岩双裂隙热-流耦合参数敏感性[J]. 吉林大学学报(地球科学版),2022,52(6):1971 − 1981. [ZHANG Yanjun,YUAN Xuebing,MA Yueqiang,et al. Sensitivity of thermal-fluid coupling parameters of granite double fractures[J]. Journal of Jilin University (Earth Science Edition),2022,52(6):1971 − 1981. (in Chinese with English abstract)

    Google Scholar

    ZHANG Yanjun, YUAN Xuebing, MA Yueqiang, et al. Sensitivity of thermal-fluid coupling parameters of granite double fractures[J]. Journal of Jilin University (Earth Science Edition), 2022, 526): 19711981. (in Chinese with English abstract)

    Google Scholar

    [18] 李燕. 麦积山石窟水汽凝结机理及防治措施研究[D]. 兰州:兰州大学,2020. [LI Yan. Mechanism and control measures of air moisture condensation in Maijishan grottoes[D]. Lanzhou:Lanzhou University,2020. (in Chinese with English abstract)

    Google Scholar

    LI Yan. Mechanism and control measures of air moisture condensation in Maijishan grottoes[D]. Lanzhou: Lanzhou University, 2020. (in Chinese with English abstract)

    Google Scholar

    [19] 马策,蒋小伟,闫宏彬,等. 基于红外热成像技术的石窟壁面凝结水形成规律研究[J]. 水文地质工程地质,2022,49(4):30 − 36. [MA Ce,JIANG Xiaowei,YAN Hongbin,et al. A study of the formation pattern of condensation water in grottoes based on the infrared thermal imaging technology[J]. Hydrogeology & Engineering Geology,2022,49(4):30 − 36. (in Chinese with English abstract)

    Google Scholar

    MA Ce, JIANG Xiaowei, YAN Hongbin, et al. A study of the formation pattern of condensation water in grottoes based on the infrared thermal imaging technology[J]. Hydrogeology & Engineering Geology, 2022, 494): 3036. (in Chinese with English abstract)

    Google Scholar

    [20] 李昂,王化锋,宁立波,等. 边坡裂隙岩体内凝结水形成区域的分布特征[J]. 地球科学进展,2020,35(2):189 − 197. [LI Ang,WANG Huafeng,NING Libo,et al. Distribution characteristics of formed region of condensate in slope fractured rock mass[J]. Advances in Earth Science,2020,35(2):189 − 197. (in Chinese with English abstract)

    Google Scholar

    LI Ang, WANG Huafeng, NING Libo, et al. Distribution characteristics of formed region of condensate in slope fractured rock mass[J]. Advances in Earth Science, 2020, 352): 189197. (in Chinese with English abstract)

    Google Scholar

    [21] 朱晛亭,黄景春,宁立波,等. 裂隙岩体内凝结水时空分布规律——以宜阳锦屏山为例[J]. 水文地质工程地质,2018,45(4):1 − 6. [ZHU Xianting,HUANG Jingchun,NING Libo,et al. Temporal and spatial distribution of condensate water in fractured rock mass:A case study in the Jinping Mountain of Yiyang County[J]. Hydrogeology & Engineering Geology,2018,45(4):1 − 6. (in Chinese with English abstract)

    Google Scholar

    ZHU Xianting, HUANG Jingchun, NING Libo, et al. Temporal and spatial distribution of condensate water in fractured rock mass: A case study in the Jinping Mountain of Yiyang County[J]. Hydrogeology & Engineering Geology, 2018, 454): 16. (in Chinese with English abstract)

    Google Scholar

    [22] 余启明,宁立波,赵国红,等. 裂隙岩体水汽场湿度季节变化规律研究[J]. 水电能源科学,2019,37(12):91 − 94. [YU Qiming,NING Libo,ZHAO Guohong,et al. Study of seasonal variation law of water vapor field humidity in fractured rock mass[J]. Water Resources and Power,2019,37(12):91 − 94. (in Chinese with English abstract)

    Google Scholar

    YU Qiming, NING Libo, ZHAO Guohong, et al. Study of seasonal variation law of water vapor field humidity in fractured rock mass[J]. Water Resources and Power, 2019, 3712): 9194. (in Chinese with English abstract)

    Google Scholar

    [23] 周建伟,苏丹辉,袁磊,等. 岩质边坡非饱和带水汽运移机制及其生态学意义[J]. 地质科技通报,2020,39(1):53 − 59. [ZHOU Jianwei,SU Danhui,YUAN Lei,et al. Water vapor transport mechanism in unsaturated zone of rock slope and its ecological significance[J]. Bulletin of Geological Science and Technology,2020,39(1):53 − 59. (in Chinese with English abstract)

    Google Scholar

    ZHOU Jianwei, SU Danhui, YUAN Lei, et al. Water vapor transport mechanism in unsaturated zone of rock slope and its ecological significance[J]. Bulletin of Geological Science and Technology, 2020, 391): 5359. (in Chinese with English abstract)

    Google Scholar

    [24] 孔凡彪. 山东章丘黄土沉积中砾石层的砾组结构特征研究[D]. 济南:山东师范大学,2018. [KONG Fanbiao. Fabric characteristics of gravel layer in the loess of the Zhangqiu,Shandong Province[D]. Jinan:Shandong Normal University,2018. (in Chinese with English abstract)

    Google Scholar

    KONG Fanbiao. Fabric characteristics of gravel layer in the loess of the Zhangqiu, Shandong Province[D]. Jinan: Shandong Normal University, 2018. (in Chinese with English abstract)

    Google Scholar

    [25] 蒋裕强,陆廷清. 石油与天然气地质概论[M]. 北京:石油工业出版社,2010. [JIANG Yuqiang,LU Tingqing. Introduction to petroleum and natural gas geology[M]. Beijing:Petroleum Industry Press,2010. (in Chinese).

    Google Scholar

    JIANG Yuqiang, LU Tingqing. Introduction to petroleum and natural gas geology[M]. Beijing: Petroleum Industry Press, 2010. (in Chinese).

    Google Scholar

    [26] 张国厅. 高寒山区表层岩体的温度效应研究——以四川藏区主要公路为例[D]. 成都:成都理工大学,2017. [ZHANG Guoting. Study on temperature effect of shallow rock mass in alpine area:A case study of rockfall along Tibet region roads[D]. Chengdu:Chengdu University of Technology,2017. (in Chinese with English abstract)

    Google Scholar

    ZHANG Guoting. Study on temperature effect of shallow rock mass in alpine area: A case study of rockfall along Tibet region roads[D]. Chengdu: Chengdu University of Technology, 2017. (in Chinese with English abstract)

    Google Scholar

    [27] 王楚骄. 东缘进藏交通廊道地温分布及隧址区地温分析方法[D]. 成都:西南交通大学,2013. [WANG Chujiao. The distribution of geotemperature field of sichuan-tibet highway & the method to simulate ground temperature of tunnel site[D]. Chengdu:Southwest Jiaotong University,2013. (in Chinese with English abstract)

    Google Scholar

    WANG Chujiao. The distribution of geotemperature field of sichuan-tibet highway & the method to simulate ground temperature of tunnel site[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese with English abstract)

    Google Scholar

    [28] 孙占学,张文,胡宝群,等. 沁水盆地大地热流与地温场特征[J]. 地球物理学报,2006,49(1):130 − 134. [SUN Zhanxue,ZHANG Wen,HU Baoqun,et al. Features of heat flow and the geothermal field of the Qinshui Basin[J]. Chinese Journal of Geophysics,2006,49(1):130 − 134. (in Chinese with English abstract)

    Google Scholar

    SUN Zhanxue, ZHANG Wen, HU Baoqun, et al. Features of heat flow and the geothermal field of the Qinshui Basin[J]. Chinese Journal of Geophysics, 2006, 491): 130134. (in Chinese with English abstract)

    Google Scholar

    [29] 刘晓燕,赵军,石成,等. 土壤恒温层温度及深度研究[J]. 太阳能学报,2007,28(5):494 − 498. [LIU Xiaoyan,ZHAO Jun,SHI Cheng,et al. Study on soil layer of constant temperature[J]. Acta Energiae Solaris Sinica,2007,28(5):494 − 498. (in Chinese with English abstract)

    Google Scholar

    LIU Xiaoyan, ZHAO Jun, SHI Cheng, et al. Study on soil layer of constant temperature[J]. Acta Energiae Solaris Sinica, 2007, 285): 494498. (in Chinese with English abstract)

    Google Scholar

    [30] 邹邦银. 热力学与分子物理学[M]. 武汉:华中师范大学出版社,2004. [ZOU Bangyin. Thermodynamics and molecular physics[M]. Wuhan:Central China Normal University Press,2004. (in Chinese)

    Google Scholar

    ZOU Bangyin. Thermodynamics and molecular physics[M]. Wuhan: Central China Normal University Press, 2004. (in Chinese)

    Google Scholar

    [31] WALKER J M. One-degree increments in soil temperatures affect maize seedling behavior[J]. Soil Science Society of America Journal,1969,33(5):729 − 736. doi: 10.2136/sssaj1969.03615995003300050031x

    CrossRef Google Scholar

    [32] 吴丹. 不同光照、播量和根系温度对工厂化水稻育秧的影响[D]. 南京:南京农业大学,2015. [WU Dan. Effect of different light,sowing rate and root temperature on growth and developmeng of rice seedlings[D]. Nanjing:Nanjing Agricultural University,2015. (in Chinese with English abstract)

    Google Scholar

    WU Dan. Effect of different light, sowing rate and root temperature on growth and developmeng of rice seedlings[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English abstract)

    Google Scholar

    [33] 刘炜. 秸秆覆盖的土壤温度效应及其影响小麦生长的机理研究[D]. 杨凌:西北农林科技大学,2007. [LIU Wei. Effect of straw mulching on soil temperature and mechanism of mulching impact on wheat growth[D]. Yangling:Northwest A & F University,2007. (in Chinese with English abstract)

    Google Scholar

    LIU Wei. Effect of straw mulching on soil temperature and mechanism of mulching impact on wheat growth[D]. Yangling: Northwest A & F University, 2007. (in Chinese with English abstract)

    Google Scholar

    [34] 曲明南. CO2升高和短期高温胁迫对玉米幼苗生理生化指标的影响[D]. 沈阳:沈阳农业大学,2013. [QU Mingnan. Effects of elevated CO2 and short-term heat stress on physiological and biochemical variables in maize seedlings[D]. Shenyang:Shenyang Agricultural University,2013. (in Chinese with English abstract)

    Google Scholar

    QU Mingnan. Effects of elevated CO2 and short-term heat stress on physiological and biochemical variables in maize seedlings[D]. Shenyang: Shenyang Agricultural University, 2013. (in Chinese with English abstract)

    Google Scholar

    [35] 樊维. 裂隙岩体植物根劈作用机理研究[D]. 重庆:重庆交通大学,2016. [FAN Wei. The mechanism study of rock-broken process by root-growth of plant in fractured rock[D]. Chongqing:Chongqing Jiaotong University,2016. (in Chinese with English abstract)

    Google Scholar

    FAN Wei. The mechanism study of rock-broken process by root-growth of plant in fractured rock[D]. Chongqing: Chongqing Jiaotong University, 2016. (in Chinese with English abstract)

    Google Scholar

    [36] MUELLER K E,TILMAN D,FORNARA D A,et al. Root depth distribution and the diversity-productivity relationship in a long-term grassland experiment[J]. Ecology,2013,94(4):787 − 793. doi: 10.1890/12-1399.1

    CrossRef Google Scholar

    [37] 李慧强. 都江堰市蒲虹路边坡草本植物根系分布及抗拉特性研究[D]. 雅安:四川农业大学,2015. [LI Huiqiang. Research on the distribution and tensile properties of the root system of the slope herbaceous plant in puhong road,Dujiangyan City[D]. Yaan:Sichuan Agricultural University,2015. (in Chinese with English abstract)

    Google Scholar

    LI Huiqiang. Research on the distribution and tensile properties of the root system of the slope herbaceous plant in puhong road, Dujiangyan City[D]. Yaan: Sichuan Agricultural University, 2015. (in Chinese with English abstract)

    Google Scholar

    [38] 蔡施泽. 上海常见园林乔木根系分布特征与土壤蓄渗关系研究及应用[D]. 上海:上海交通大学,2017. [CAI Shize. Relationship between Shanghai common ornamental trees’ root distribution and soil infiltration characteristics[D]. Shanghai:Shanghai Jiao Tong University,2017. (in Chinese with English abstract)

    Google Scholar

    CAI Shize. Relationship between Shanghai common ornamental trees’ root distribution and soil infiltration characteristics[D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(1216) PDF downloads(175) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint