2023 Vol. 43, No. 2
Article Contents

TAN Hongbing, SHI Zhiwei, CONG Peixin, XUE Fei, CHEN Guohui. 2023. The spatial distribution law of B, Li, Rb and Cs elements and supernormal enrichment mechanism in Tibet geothermal system. Sedimentary Geology and Tethyan Geology, 43(2): 404-415. doi: 10.19826/j.cnki.1009-3850.2023.02001
Citation: TAN Hongbing, SHI Zhiwei, CONG Peixin, XUE Fei, CHEN Guohui. 2023. The spatial distribution law of B, Li, Rb and Cs elements and supernormal enrichment mechanism in Tibet geothermal system. Sedimentary Geology and Tethyan Geology, 43(2): 404-415. doi: 10.19826/j.cnki.1009-3850.2023.02001

The spatial distribution law of B, Li, Rb and Cs elements and supernormal enrichment mechanism in Tibet geothermal system

  • The Tibet Plateau hosts the very typical geothermal resources in the world, which belongs to the main part of the Mediterranean-himalayan geotropics. The most typical characteristic is that these geothermal springs show unusual enrichment of many rare and dispersed elements such as B, Li, Rb, and Cs. Correspondingly, large-scale travertine or silica sinters are widely deposited in almost all geothermal fields. Some of the silica sinters show an unusual enrichment of Cs that formed a new type of Cs deposit. However, the origin of those enriched elements and their enrichment mechanism in geothermal water has remained unclear. This study based on the long observation in the field as well as accumulated datasets, and previous literature summarized for the geothermal system in the Tibetan Plateau, is in an attempt to provide new insights into the origin and mechanism of the enrichment of these typical elements. Geochemical datasets show an unusual and coincident enrichment of B, Li, Rb and Cs in the high-temperature geothermal springs as well as silica sinters along Yaluzangbu Suture in Tibet. Depleted B isotope and elemental association, groundwater deep circulation as well as much geophysical evidence indicate the dominant source likely originates from residual magmatic fluids derived from crustal partial remelting while water-rock interaction itself seems difficult to develop so large-scale enrichment of these elements. It can thus be concluded that the plate collision and thrust, crustal partial remelting and magmatic fluids differentiation and evolution during the upwelling and groundwater deep circulation synergistically play effects on the unusual enrichment of typical elements. This study will strengthen a comprehensive understanding of the unique geothermal system for both water resources-energy-minerals in Tibet, in particular, help people focus on special minerals dissolved in geothermal water. In addition, the study will also instruct to well assess the values of mineral resources of geothermal water or deposits.

  • 加载中
  • [1] Aggarwal J K, Palmer M R, Bullen T D, et al. , 2000. The boron isotope systematics of Icelandic geothermal waters: 1. Meteoric water charged systems[J]. Geochimica Et Cosmochimica Acta, 64(4): 579-585. doi: 10.1016/S0016-7037(99)00300-2

    CrossRef Google Scholar

    [2] Bartier E, 2002. Geothermal energy technology and current status: an overview[J]. Renewable and Sustainable Energy Reviews, 6(1): 3-65.

    Google Scholar

    [3] Birkle P, Merkel B, Portugal E, et al. , 2001. The origin of reservoir fluids in the geothermal field of Los Azufres, Mexico - isotopical and hydrological indications[J]. Applied Geochemistry, 16(14): 1595-1610. doi: 10.1016/S0883-2927(01)00031-2

    CrossRef Google Scholar

    [4] Brown L. D. , Zhao W. J. , Nelson K. D, et al. , 1996. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profling. [J]. Science, 274: 1688-1690. doi: 10.1126/science.274.5293.1688

    CrossRef Google Scholar

    [5] Brugger J, Long N, Mcphail D C, et al. , 2005. An active amagmatic hydrothermal system: The Paralana hot springs, Northern Flinders Ranges, South Australia[J]. Chemical Geology, 222 (1-2): 35-64. doi: 10.1016/j.chemgeo.2005.06.007

    CrossRef Google Scholar

    [6] Cao H W, Pei Q M, Santosh M, et al. , 2022. Himalayan leucogranites: A review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization[J]. Earth-Science Reviews, 234, 104229.

    Google Scholar

    [7] Chowdhury A N, Handa B K, Das A K, 1974. High lithium, rubidium and cesium contents of thermal spring water, spring sediments and borax deposits in Puga valley, Kashmir, India[J]. Geochemical journal, 8(2): 61-65. doi: 10.2343/geochemj.8.61

    CrossRef Google Scholar

    [8] Duo J, 2005. High-temperature geothermal systems: Characteristics of Yangbajing geothermal fields, China[J]. Geotherm. Energy, 2: 10-14.

    Google Scholar

    [9] Elenga H I, Tan H, Su J, et al, 2021. Origin of the enrichment of B and alkali metal elements in the geothermal water in the Tibetan Plateau: Evidence from B and Sr isotopes[J]. Geochemistry, 81(3): 125797. doi: 10.1016/j.chemer.2021.125797

    CrossRef Google Scholar

    [10] Feng Z J, Zhao Y S, Zhou A C, et al. , 2012. Development program of hot dry rock geothermal resource in the Yangbajing Basin of China[J]. Renewable Energy, 39(1): 490-495. doi: 10.1016/j.renene.2011.09.005

    CrossRef Google Scholar

    [11] Fernando T, Michael W, Francisco V, 2012. The boron isotope geochemistry of tourmaline−rich alteration in the IOCG systems of northern Chile: implications for a magmatic−hydrothermal origin [J]. Miner Deposita, 47: 483−499.

    Google Scholar

    [12] Grimaud D, Huang S, Michard G, et al. , 1985. Chemical study of geothermal waters of Central Tibet (China)[J]. Geothermics, 14(1): 35-48. doi: 10.1016/0375-6505(85)90092-6

    CrossRef Google Scholar

    [13] Guillot S, Sigoyer J D, Lardeaux J M, et al. , 1997. Eclogitic metasediments from the Tso Morari area (Ladakh, Himalaya): evidence for continental subduction during India-Asia convergence[J]. Contributions to Mineralogy & Petrology, 128(2-3): 197-212.

    Google Scholar

    [14] Guo Q H, 2012. Hydrogeochemistry of high-temperature geothermal systems in China: A review[J]. Applied Geochemistry, 27(10): 1887-1898. doi: 10.1016/j.apgeochem.2012.07.006

    CrossRef Google Scholar

    [15] Gupta H K, Roy S, 2007. Geothermal energy: an alternative resource for the 21st century[M]. Elsevier, Amsterdam.

    Google Scholar

    [16] Hoke L, Lamb S, Hilton D R, et al. , 2000. Southern limit of mantle-derived geothermal helium emissions in Tibet: implications for lithospheric structure[J]. Earth and Planetary Science Letters, 180(3-4): 297-308. doi: 10.1016/S0012-821X(00)00174-6

    CrossRef Google Scholar

    [17] 侯增谦, 李振清, 曲晓明, 等, 2001.0. 5Ma以来的青藏高原隆升过程—来自冈底斯带热水活动的证据[J]. 中国科学(D辑), 31(B12): 27-33

    Google Scholar

    Hou Z Q, Li Z Q, Qu X M, et al. , 2001. Uplift process of the Qinghai-Tibet Plateau since 0.5 Ma: Evidence from hot water activity in the Gangdise belt[J]. Science In China(Series D), 31(B12): 27-33.

    Google Scholar

    [18] 侯增谦, 李振清, 2004. 印度大陆俯冲前缘的可能位置: 来自藏南和藏东活动热泉气体He同位素约束[J]. 地质学报, (04): 482-493 doi: 10.3321/j.issn:0001-5717.2004.04.007

    CrossRef Google Scholar

    Hou Z Q and Li Z Q, 2004. Possible location for underthrusting front of the Indus Continent: Constraints from Helium Isotope of the Geothermal Gas in southern Tibet and eastern Tibet[J]. Acta Geologica Sinica, (04): 482-493. doi: 10.3321/j.issn:0001-5717.2004.04.007

    CrossRef Google Scholar

    [19] 侯增谦, 赵志丹, 高永丰, 等, 2006. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据[J]. 岩石学报, 22(4), 761 − 774.

    Google Scholar

    Hou Z Q, Zhao Z D, Gao Y F, et al. , 2006. Tearing and dischronal subduction of the Indian continental slab: Evidence from Cenozoic Gangdese volcano-magmatic rocks in south Tibet[J]. Acta Petrologica Sinica, 22(4): 761 − 774.

    Google Scholar

    [20] Hua Y J, Zhang S X, Li M K, et. al, 2019. Magma system beneath Tengchong volcanic zone inferred from local earthquake seismic tomography[J], Journal of Volcanology and Geothermal Research, 377(JUN. 1): 1 − 16.

    Google Scholar

    [21] Jiang S Y, Radvanec M, Nakamura E, et al. , 2008. Chemical and boron isotopic variations of tourmaline in the Hnilec granite-related hydrothermal system, Slovakia: Constraints on magmatic and metamorphic fluid evolution[J]. Lithos, 106(1-2): 1-11. doi: 10.1016/j.lithos.2008.04.004

    CrossRef Google Scholar

    [22] Kasemann S A, Meixner A, Erzinger J, et al. , 2003. Boron isotope composition of geothermal fluids and borate minerals from salar deposits (central Andes/NW Argentina)[J]. Journal of South American Earth Sciences, 16(8): 685-697.

    Google Scholar

    [23] Klemperer, S L, Zhao, P, Whyte C J, et al. , 2022. Limited underthrusting of India below Tibet: 3He/4He analysis of thermal springs locates the mantle suture in continental collision[J]. Proceedings of the National Academy of Sciences, 119(12): e2113877119. doi: 10.1073/pnas.2113877119

    CrossRef Google Scholar

    [24] Kind R, Ni J, Zhao W J, et al. , 1996. Evidence from earthquake data for a partial melten crustal layer in Southern Tibet[J]. Science, 274: 1692-1694. doi: 10.1126/science.274.5293.1692

    CrossRef Google Scholar

    [25] Klemperer S L, Kennedy B M, Sastry S R, et al. , 2013. Mantle fluids in the Karakoram fault: Helium isotope evidence[J]. Earth and Planetary Science Letters, 366: 59-70. doi: 10.1016/j.jpgl.2013.01.013

    CrossRef Google Scholar

    [26] Li J T, Song X D, 2018. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proceedings of the National Academy of Sciences, 115(33): 8296-8300. doi: 10.1073/pnas.1717258115

    CrossRef Google Scholar

    [27] Li S H, Unsworth M J, Booker J R, et al. , 2003. Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data[J]. Geophysical Journal International, 153(2): 289-304. doi: 10.1046/j.1365-246X.2003.01850.x

    CrossRef Google Scholar

    [28] Li Z Q, Hou Z Q, Nie F J, et al. , 2006. Enrichment of Element Cesium during Modern Geothermal Action in Tibet, China[J]. Acta Geologica Sinica, 80(9): 1457-1464.

    Google Scholar

    [29] 李振清, 侯增谦, 聂凤军, 等, 2006. 西藏地热活动中铯的富集过程探讨[J]. 地质学报, 80(6): 1457-1464

    Google Scholar

    Li Z Q, Hou Z Q, Nie F J, et al. , 2006. Enrichment of element Cesium during modern geothermal action in Tibet, China[J]. Acta Geologica Sinica, 80(6): 1457-1464.

    Google Scholar

    [30] Liao Z J, 2018. Thermal Springs and Geothermal Energy in the Qinghai-Tibetan Plateau and the Surroundings[J]. Springer Hydrogeology, 23-38.

    Google Scholar

    [31] Liu, Z, Tian, X, Yuan, X, et al. , 2020. Complex structure of upper mantle beneath the Yadong-Gulu rift in Tibet revealed by S-to-P converted waves[J]. Earth and Planetary Science Letters, 531, 115954.

    Google Scholar

    [32] Makovsky Y, Klemperer S L, Ratschbacher L, et al. , 1999. Midcrustal reflector on INDEPTH wide-angle profiles: An ophiolitic slab beneath the India-Asia suture in southern Tibet?[J]. Tectonics, 18(5): 793-808. doi: 10.1029/1999TC900022

    CrossRef Google Scholar

    [33] Minissale A, Borrini D, Montegrossi G, et al. , 2008. The Tianjin geothermal field (north-eastern China): Water chemistry and possible reservoir permeability reduction phenomena[J]. Geothermics, 37(4): 400-428. doi: 10.1016/j.geothermics.2008.03.001

    CrossRef Google Scholar

    [34] 牟保磊, 1999. 元素地球化学[M]. 北京: 北京大学出版社, 1 − 227

    Google Scholar

    Mu B L, 1999. Element Geochemistry[M]. Beijing: Peking University Press, 1 − 227.

    Google Scholar

    [35] Nelson K D, Zhao W, Brown L D, et al. , 1996. Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results[J]. science, 274(5293): 1684-1688. doi: 10.1126/science.274.5293.1684

    CrossRef Google Scholar

    [36] Nicholson K, 1993. Geothermal fluids: Chemistry and exploration techniques[M]. Springer−Verlag.

    Google Scholar

    [37] Qin D J, Turner J V, Pang Z H, 2005. Hydrogeochemistry and groundwater circulation in the Xi’an geothermal field, China[J]. Geothermics, 34(4): 471-494. doi: 10.1016/j.geothermics.2005.06.004

    CrossRef Google Scholar

    [38] 秦克章, 周起凤, 赵俊兴, 等, 2021. 喜马拉雅淡色花岗岩带伟晶岩的富铍成矿特点及向更高处找锂[J]. 地质学报, 95(10): 3146~3162 doi: 10.3969/j.issn.0001-5717.2021.10.014

    CrossRef Google Scholar

    Qin K Z, Zhou Q F, Zhao J X, et al. , 2021. Be-rich mineralization features of Himalayan leucogranite belt and prospects for lithium-bearing pegmatites in higher altitudes[J]. Acta Geologica Sinica, 95(10): 3146~3162. doi: 10.3969/j.issn.0001-5717.2021.10.014

    CrossRef Google Scholar

    [39] Shi, D, Klemperer, S. L, Shi, J, et al. , 2020. Localized foundering of Indian lower crust in the India–Tibet collision zone[J]. Proceedings of the National Academy of Sciences, 117, 24742-24747.

    Google Scholar

    [40] Su J B, Tan H B, 2022. The genesis of Rare-alkali metal enrichment in the geothermal anomalies controlled by faults and magma along the northern Yadong-Gulu rift[J]. Ore Geology Reviews, 147: 104987. doi: 10.1016/j.oregeorev.2022.104987

    CrossRef Google Scholar

    [41] Tan H B, Chen J, Rao W B, et al. , 2012. Geothermal constraints on enrichment of boron and lithium in salt lakes: An example from a river-salt lake system on the northern slope of the eastern Kunlun Mountains, China[J]. Journal of Asian Earth Sciences, 51: 21-29. doi: 10.1016/j.jseaes.2012.03.002

    CrossRef Google Scholar

    [42] Tan H B, Zhang Y F, Zhang W J, et al. , 2014. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes[J]. Applied Geochemistry, 51: 23-32. doi: 10.1016/j.apgeochem.2014.09.006

    CrossRef Google Scholar

    [43] 佟伟, 1981. 西藏地热[M]. 北京: 科学出版社, 1 − 118

    Google Scholar

    Tong W, 1981. Tibet Geothermal[M]. Beijing: Science Press, 1 − 118.

    Google Scholar

    [44] 佟伟, 廖志杰, 刘时彬, 等, 2000. 西藏温泉志[M]. 北京: 科学出版社.

    Google Scholar

    Tong W, Liao Z J, Liu S B, et al., 2000. Thermal Springs in Tibet[M]. Beijing: Science Press.

    Google Scholar

    [45] 王贵玲, 蔺文静, 2020. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 94(07): 1923-1937 doi: 10.3969/j.issn.0001-5717.2020.07.002

    CrossRef Google Scholar

    Wang G L and Lin W J, 2020. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 94(07): 1923-1937. doi: 10.3969/j.issn.0001-5717.2020.07.002

    CrossRef Google Scholar

    [46] Wang S Q, Lu C, Nan D W, et al. , 2017. Geothermal resources in Tibet of China: current status and prospective development[J]. Environmental Earth Sciences, 76(6): 239. doi: 10.1007/s12665-017-6464-5

    CrossRef Google Scholar

    [47] Wei K, Lin R, Wang Z, 1982. Isotopic composition and tritium content of waters from Yangbajing geothermal area, Xizang (Tibet), China[C]//Proc. 5th Internat. Conf. Geochronology, Cosmochronology and Isotope Geology. Nikko National Park, Japan.

    Google Scholar

    [48] 徐则民, 雍自权, 孙世雄, 1997. 西藏朗久地热田水文地球化学特征[J]. 桂林工学院学报, 17(1): 63-69

    Google Scholar

    Xu Z M, Yong Z Q, Sun S X, 1997. The hydrogeochemical features of langjiu geothermal field in Tibet[J]. Journal Of Guilin Institute Of Technology, 17(1): 63-69.

    Google Scholar

    [49] Zhang W J, Tan H B, Zhang Y F, et al. , 2015. Boron geochemistry from some typical Tibetan hydrothermal systems: origin and isotopic fractionation[J]. Applied Geochemistry, 63: 436-445. doi: 10.1016/j.apgeochem.2015.10.006

    CrossRef Google Scholar

    [50] 张朝锋, 史强林, 张玲娟, 2018. 青藏高原新生代岩浆活动与地热关系探讨[J]. 中国地质调查, 5(2): 18-24

    Google Scholar

    Zhang C F, Shi Q L, Zhang L J, 2018. Discussion on the relationship between Cenozoic magmatic activity and geotherm in Tibetan Plateau[J]. Geological Survey Of China, 5(2): 18-24.

    Google Scholar

    [51] 张锡根, 1998. 西藏羊八井现代地下热水系统硫矿的成矿作用[J]. 化工矿产地质, (01): 1-10

    Google Scholar

    Zhang X G, 1998. Sulfur Mineralizati On Of Modern Geotheramal System In Yangbajing Basin Of Xizang[J]. Geology Of Chemical Minerals, (01): 1-10.

    Google Scholar

    [52] 张燕飞, 2016. 藏−滇地热系统稀散元素分布与物源研究[D]. 南京: 河海大学博士毕业论文.

    Google Scholar

    Zhang Y F, 2016. Distribution and origin of some rare and dispersed elements in geothermal systems in Tibetan−Western Yunnan Geothermal Belt[D]. Nanjing: Doctoral Thesis of Hohai University.

    Google Scholar

    [53] 张希友, 李国政, 2006. 长白山地热田地质及地球化学特征[J]. 吉林地质, 25(03): 25-30

    Google Scholar

    Zhang X Y, Li G Z, 2006. The geologic and geochemical characteristics of the Changbai Mountain geothermal field[J]. Jilin Geology, 25(03): 25-30.

    Google Scholar

    [54] Zhang Y F, Tan H B, Zhang W J, et al. , 2015. A new geochemical perspective on hydrochemical evolution of the Tibetan geothermal system[J]. Geochemistry International, 53(12): 1090-1106. doi: 10.1134/S0016702915120125

    CrossRef Google Scholar

    [55] 赵慈平, 冉华, 王云, 2012. 腾冲火山区的现代幔源氦释放: 构造和岩浆活动意义[J]. 岩石学报, 28(4): 1189-1204

    Google Scholar

    Zhao C P, Ran H, Wang Y, 2012. Present-day mantle-derived helium release in the Tengchong volcanic field, Southwest China: Implications for tectonics and magmatism[J]. Acta Petrologica Sinica, 28(4): 1189-1204.

    Google Scholar

    [56] 赵平, 多吉, 梁廷立, 等, 1998. 西藏羊八井地热田气体地球化学特征[J]. 科学通报, (07): 691-696 doi: 10.3321/j.issn:0023-074X.1998.07.004

    CrossRef Google Scholar

    Zhao P, Duo J, Liang T L, et al. , 1998. Gas geochemical characteristics of Yangbajing geothermal field in Tibet[J]. Chinese Science Bulletin, (07): 691-696. doi: 10.3321/j.issn:0023-074X.1998.07.004

    CrossRef Google Scholar

    [57] 赵平, Kennedy M, 多吉, 等, 2001. 西藏羊八井热田地热流体成因及演化的惰性气体制约[J]. 岩石学报, (03): 497-503 doi: 10.3321/j.issn:1000-0569.2001.03.020

    CrossRef Google Scholar

    Zhao P, Kennedy M, Duo J, et al. , 2001. Noble gases constraints on the origin and evolution of geothermal fluids from the Yangbajain geothermal field, Tibet[J]. Acta Petrologica Sinica, 17(3): 497-503. doi: 10.3321/j.issn:1000-0569.2001.03.020

    CrossRef Google Scholar

    [58] 赵元艺, 崔玉斌, 赵希涛, 2010. 西藏扎布耶盐湖钙华岛钙华的地质地球化学特征及意义[J]. 地质通报, 29(1): 124-141 doi: 10.3969/j.issn.1671-2552.2010.01.015

    CrossRef Google Scholar

    Zhao Y Y, Cui Y B, Zhao X T, 2010. Geological and geochemical features and significance of travertine in travertine-island from Zhabuye salt lake, Tibet, China[J]. Geological Bulletin of China, 29(1): 124-141. doi: 10.3969/j.issn.1671-2552.2010.01.015

    CrossRef Google Scholar

    [59] 郑绵平, 向军, 魏新俊, 等, 1989. 青藏高原盐湖[M]. 北京: 北京科学技术出版社, 1 − 470

    Google Scholar

    Zheng M P, Xiang J, Wei X J, et al. , 1989. Salt Lake in Qinghai−Tibet Plateau[M]. Beijing: Beijing Science and Technology Press, 1 − 470.

    Google Scholar

    [60] 郑绵平, 王秋霞, 多吉, 等, 1995. 水热成矿新类型: 西藏铯硅华矿床[M]. 北京: 地质出版社, 1 − 62

    Google Scholar

    Zheng M P, Wang Q X, Duo J, et al. , 1995. A New Type of Hydrothermal Deposit: Cesium− Bearing Geyserite in Tibet[M]. Beijing: Geological Publishing House, 1 − 62.

    Google Scholar

    [61] 郑亚新, 章铭陶, 朱炳球, 等, 1992. 西藏地热系统的稀碱金属特征及开发利用潜力[J]. 自然资源学报, 7(3): 249-257 doi: 10.3321/j.issn:1000-3037.1992.03.007

    CrossRef Google Scholar

    Zheng Y X, Zhang M T, Zhu B Q, et al. , 1992. The characteristics of rare-alkali metal of the Tibetan geothermal system and the potential of its exploitation and utilization[J]. Journal Of Natural Resources, 7(3): 249-257. doi: 10.3321/j.issn:1000-3037.1992.03.007

    CrossRef Google Scholar

    [62] 朱允铸, 吴必豪, 1990. 从新构造运动看察尔汗盐湖的形成[J]. 地质学报, 64(1): 13-21 doi: 10.19762/j.cnki.dizhixuebao.1990.01.002

    CrossRef Google Scholar

    Zhu Y Z, Wu B H, 1990. The formation of the qarhan saline lakes as vie-wed from the neotectonic movement[J]. Acta Petrologica Sinica, 64(1): 13-21. doi: 10.19762/j.cnki.dizhixuebao.1990.01.002

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(1930) PDF downloads(256) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint