Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 No. 5
Article Contents

Wang Weijie, Jin Huixin, Zhang Yanling, Mao Xiaohao, Guo Yuliang. Research Progress on Resource Treatment and Recycling of Solid Waste Containing Chromium[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5): 65-71. doi: 10.3969/j.issn.1000-6532.2022.05.012
Citation: Wang Weijie, Jin Huixin, Zhang Yanling, Mao Xiaohao, Guo Yuliang. Research Progress on Resource Treatment and Recycling of Solid Waste Containing Chromium[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5): 65-71. doi: 10.3969/j.issn.1000-6532.2022.05.012

Research Progress on Resource Treatment and Recycling of Solid Waste Containing Chromium

More Information
  • In recent years, China has paid more and more attention to ecological and environmental protection, and the treatment of solid waste during industrial production has become more important. For example, stainless steel production industry, electroplating industry, chromium salt production industry, etc., will produce a large amount of chromium-containing solid waste. Long-term accumulation will not only occupy land resources but also cause serious harm to the environment. Therefore, it is particularly important to develop more effective methods for recycling and processing chromium-containing solid waste. This article summarizes the current situation of chromium ore resources in China, predicts the demand for chromium ore in the next few years, expounds the current situation and hazards of chromium-containing solid waste, and summarizes the new domestic and foreign chromium-containing solid waste treatment technologies in recent years. Research and progress in the recycling of chromium-containing solid waste, introducing the advantages and disadvantages of different treatment methods, in order to find a better way to recover and treat chromium-containing solid waste in the future.

  • 加载中
  • [1] 邱柏欣, 顾幸勇, 董伟霞, 等. 烧成温度对铬铁渣性能影响与表征[J]. 矿产综合利用, 2020(1):188-193. doi: 10.3969/j.issn.1000-6532.2020.01.038

    CrossRef Google Scholar

    QIU B X, GU X Y, DONG W X, et al. Effect of firing temperatures on properties of ferrochromium slag and characterization[J]. Multipurpose Utilization of Mineral Resources, 2020(1):188-193. doi: 10.3969/j.issn.1000-6532.2020.01.038

    CrossRef Google Scholar

    [2] 刘宇晶. 镍铬需求将保持稳定——2020年不锈钢产业镍铬需求分析预测[J]. 中国有色金属, 2020(7):40-41. doi: 10.3969/j.issn.1673-3894.2020.07.009

    CrossRef Google Scholar

    LIU Y J. Nickel and chromium demand will remain stable-2020 stainless steel industry nickel and chromium demand analysis forecast[J]. China Nonferrous Metals, 2020(7):40-41. doi: 10.3969/j.issn.1673-3894.2020.07.009

    CrossRef Google Scholar

    [3] 操龙虎. 不锈钢渣的污染性分析及其处理方法[J]. 炼钢, 2019, 35(2):75-78.

    Google Scholar

    CAO L H. Analysis of the pollution of stainless steel slag and its treatment method[J]. Steelmaking, 2019, 35(2):75-78.

    Google Scholar

    [4] 刘全文, 沙景华, 闫晶晶, 等. 中国铬资源供应风险评价与对策研究[J]. 资源科学, 2018, 40(3):516-525.

    Google Scholar

    LIU Q W, SHA J H, YAN J J, et al. Research on risk evaluation and countermeasures of China's chromium resources supply[J]. Resources Science, 2018, 40(3):516-525.

    Google Scholar

    [5] U. S. Geological Survey. Mineral Commodity Summaries 2020[R]. Reston, VA: U. S. Geological Survey, 2020: 51.

    Google Scholar

    [6] 张泽南, 张照志, 潘昭帅, 等. 全球铬矿石资源国对中国供应安全度分析[J]. 中国矿业, 2019, 28(10):69-76. doi: 10.12075/j.issn.1004-4051.2019.10.009

    CrossRef Google Scholar

    ZHANG Z N, ZHANG Z Z, PAN S S, et al. Analysis of the supply security of global chrome ore resource countries to China[J]. China Mining, 2019, 28(10):69-76. doi: 10.12075/j.issn.1004-4051.2019.10.009

    CrossRef Google Scholar

    [7] 郑明贵, 袁雪梅. 基于灰色神经网络的中国2020—2030年铬矿需求预测[J]. 资源开发与市场, 2018, 34(6):747-752. doi: 10.3969/j.issn.1005-8141.2018.06.002

    CrossRef Google Scholar

    ZHENG M G, YUAN X M. Forecast of China's chrome ore demand from 2020 to 2030 based on grey neural network[J]. Resources Development and Markets, 2018, 34(6):747-752. doi: 10.3969/j.issn.1005-8141.2018.06.002

    CrossRef Google Scholar

    [8] 李建法. 我国铬铁行业发展概况及现状[J]. 冶金管理, 2019(14):23-25.

    Google Scholar

    LI J F. The development situation and status quo of my country's ferrochrome industry[J]. Metallurgical Management, 2019(14):23-25.

    Google Scholar

    [9] 潘昭帅, 张照志, 王贤伟, 等. 中国再生铬资源回收利用现状及未来趋势分析[J]. 中国矿业, 2018, 27(8):17-21.

    Google Scholar

    PAN Z S, ZHANG Z Z, WANG X W, et al. Analysis on the status quo and future trends of China's recycled chromium resources recycling[J]. China Mining, 2018, 27(8):17-21.

    Google Scholar

    [10] LI W L, XUE X X. Emission reduction research and formation of hexavalent chromium in stainless steel smelting: Cooling rate and boron oxide addition effects[J]. Process Safety and Environmental Protection, 2018.

    Google Scholar

    [11] 吕韬. 不锈钢厂含金属固废综合利用冶炼铬镍合金[A]. 《环境工程》编委会、工业建筑杂志社有限公司. 《环境工程》2019年全国学术年会论文集(下册)[C]. 《环境工程》编委会、工业建筑杂志社有限公司: 《环境工程》编辑部, 2019: 3.

    Google Scholar

    LV T. Comprehensive utilization of metal-containing solid waste in stainless steel plants to smelt chromium-nickel alloys[A]. "Environmental Engineering" Editorial Board, Industrial Construction Magazine Co. , Ltd. "Environmental Engineering" 2019 National Academic Conference Proceedings (Volume 2)[C] . "Environmental Engineering" Editorial Board, Industrial Construction Magazine Co. , Ltd. : "Environmental Engineering" Editorial Office, 2019: 3.

    Google Scholar

    [12] Ma G, Garbers-Craig A M. Cr (VI) containing electric furnace dusts and filter cake from a stainless steel waste treatment plant: Part 1-Characteristics and microstructure[J]. Ironmaking & Steelmaking, 2006, 33(3):229-237.

    Google Scholar

    [13] ZHANG H, XIN H. An overview for the utilization of wastes from stainless steel industries[J]. Resources Conservation & Recycling, 2011, 55(8):745-754.

    Google Scholar

    [14] 张雁江, 李锋锋, 郑晓华, 等. 电镀污泥的材料化处理技术综述[J]. 电镀与涂饰, 2013, 32(12):49-51. doi: 10.3969/j.issn.1004-227X.2013.12.013

    CrossRef Google Scholar

    ZHANG Y J, LI F F, ZHENG X H, et al. Summary of materialized treatment technology of electroplating sludge[J]. Plating and Finishing, 2013, 32(12):49-51. doi: 10.3969/j.issn.1004-227X.2013.12.013

    CrossRef Google Scholar

    [15] Kristen P Nickens, Steven R Patierno, Susan Ceryak. Chromium genotoxicity: a double-edged sword[J]. Chemico-Biological Interactions, 2010, 188(2):276-288.

    Google Scholar

    [16] 李小明, 贾李锋, 邹冲, 等. 不锈钢酸洗污泥资源化利用技术进展及趋势[J]. 钢铁, 2019, 54(10):1-11. doi: 10.13228/j.boyuan.issn0449-749x.20190039

    CrossRef Google Scholar

    LI X M, JIA L F, ZOU C, et al. Progress and trend of resource utilization technology of stainless steel pickling sludge[J]. Iron and Steel, 2019, 54(10):1-11. doi: 10.13228/j.boyuan.issn0449-749x.20190039

    CrossRef Google Scholar

    [17] 马建明. 我国黑色金属矿产资源形势回顾与展望[J]. 国土资源情报, 2019(12):64-69.

    Google Scholar

    MA J M. Review and prospect of my country’s ferrous metal mineral resources situation[J]. Land Resources Information, 2019(12):64-69.

    Google Scholar

    [18] 胡晓娇, 白艳萍, 张生萍, 等. 危险废物铬渣和碱渣联合处置技术应用[J]. 广东化工, 2019, 46(9):187-188. doi: 10.3969/j.issn.1007-1865.2019.09.087

    CrossRef Google Scholar

    HU X J, BAI Y P, ZHANG S P, et al. Application of combined disposal technology of hazardous waste chromium residue and alkali residue[J]. Guangdong Chemical Industry, 2019, 46(9):187-188. doi: 10.3969/j.issn.1007-1865.2019.09.087

    CrossRef Google Scholar

    [19] 李彩霞. 钒铬渣制备氢氧化铬的研究[J]. 铁合金, 2018, 49(6):15-17+37. doi: 10.16122/j.cnki.issn1001-1943.2018.06.005

    CrossRef Google Scholar

    LI C X. Study on the preparation of chromium hydroxide from vanadium chromium slag[J]. Iron Alloys, 2018, 49(6):15-17+37. doi: 10.16122/j.cnki.issn1001-1943.2018.06.005

    CrossRef Google Scholar

    [20] 吴俊, 秦险峰, 全学军, 等. 铬铁矿无钙焙烧渣中铬盐水洗回收及还原解毒工艺研究[J]. 无机盐工业, 2019, 51(2):56-61.

    Google Scholar

    WU J, QIN X F, QUAN X J, et al. Study on the recovery and detoxification process of chromium brine in calcium-free roasting slag of chromite[J]. Inorganic Salt Industry, 2019, 51(2):56-61.

    Google Scholar

    [21] 张焕然, 王俊娥. 电镀污泥资源化利用及处置技术进展[J]. 矿产保护与利用, 2016(3):73-78. doi: 10.13779/j.cnki.issn1001-0076.2016.03.015

    CrossRef Google Scholar

    ZHANG H R, WANG J E. Progress in resource utilization and disposal technology of electroplating sludge[J]. Mineral Resources Conservation and Utilization, 2016(3):73-78. doi: 10.13779/j.cnki.issn1001-0076.2016.03.015

    CrossRef Google Scholar

    [22] 张垒, 刘尚超, 张道权, 等. 烧结炼铁协同处置含铬污泥的应用研究[J]. 烧结球团, 2018, 43(5):61-64.

    Google Scholar

    ZHANG L, LIU S C, ZHANG D Q, et al. Study on the application of co-processing of chromium-containing sludge in sintering ironmaking[J]. Sinter Pellet, 2018, 43(5):61-64.

    Google Scholar

    [23] Wang G, Lin M, Diao J, etal. Correction to Novel Strategy for Green Comprehensive Utilization of Vanadium Slag with High-Content Chromium[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1):723-723.

    Google Scholar

    [24] 易龙生, 刘苗, 赵立华, 等. 电镀污泥氨浸渣中铬的回收[J]. 环境污染与防治, 2020, 42(3):334-338.

    Google Scholar

    YI L S, LIU M, ZHAO L H, et al. Recovery of chromium from electroplating sludge ammonia leaching residue[J]. Environmental Pollution and Control, 2020, 42(3):334-338.

    Google Scholar

    [25] Preston Devasia, K. A. Natarajan. Bacterial leaching. 2004, 9(8): 27-34.

    Google Scholar

    [26] 汪正洁, 杨健, 潘德安, 等. 不锈钢渣资源化利用技术研究现状[J]. 钢铁研究学报, 2015, 27(2):1-6.

    Google Scholar

    WANG Z J, YANG J, PAN D A, et al. Research status of stainless steel slag resource utilization technology[J]. Journal of Iron and Steel Research, 2015, 27(2):1-6.

    Google Scholar

    [27] 吕岩, 杨利彬, 杨勇, 等. 一种不锈钢渣中铬的在线解毒处理方法[P]. CN109628688A, 2019-04-16.

    Google Scholar

    LV Y, YANG L B, YANG Y, et al. An online detoxification method for chromium in stainless steel slag[P]. CN109628688A, 2019-04-16.

    Google Scholar

    [28] Liu M, Ma G, Zhang X, et al. Preparation of black ceramic tiles using waste copper slag and stainless steel slag of electric arc furnace[J]. Materials, 2020, 13(3).

    Google Scholar

    [29] Lin Y, Yan B J, Fabritius Timo, et al. Immobilization of chromium in stainless steel slag using low zinc electric arc furnace dusts[J]. Metallurgical and Materials Transactions, 2020, 51(2).

    Google Scholar

    [30] Beretta G, Daghio M, Tofalos A E, et al. Microbial assisted hexavalent chromium removal in bioelectrochemical Systems[J]. Water, 2020, 12(2).

    Google Scholar

    [31] Foquan Gu, Yuanbo Zhang, Zhiwei Peng, et al. Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching[J]. Journal of Hazardous Materials, 2019:374.

    Google Scholar

    [32] 王会刚, 彭犇, 岳昌盛, 等. 钢渣改性研究进展及展望[J]. 环境工程, 2020, 38(5):133-137+106. doi: 10.13205/j.hjgc.202005023

    CrossRef Google Scholar

    WANG H G, PENG B, YUE C S, et al. Research progress and prospects of steel slag modification[J]. Environmental Engineering, 2020, 38(5):133-137+106. doi: 10.13205/j.hjgc.202005023

    CrossRef Google Scholar

    [33] Julia Rosales, Francisco Agrela, José Antonio Entrenas, et al. Potential of stainless steel slag waste in manufacturing self-compacting concrete[J]. Materials, 2020, 13:2049.

    Google Scholar

    [34] Zhang Y X, Liu S L, OuYang S L, et al. Transformation of unstable heavy metals in solid waste into stable state by the preparation of glass-ceramics[J]. Materials Chemistry and Physics, 2020.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(2304) PDF downloads(333) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint