Citation: | Yang Huifen, Guo Song, Zhang Junjun, Sun Qiwei, Zhou Yichen, Li Xuan, Zhao Tong. Simultaneous Stabilization of As, Zn, Pb and Cd in Lead Slag by Pyrolysis Residue of Oily Sludge[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5): 58-64. doi: 10.3969/j.issn.1000-6532.2022.05.011 |
To address the problem of heavy metal contamination of lead smelting slag such as As, Zn, Pb and Cd in the Sishuizhuang area of Gejiu City, Yunnan Province, oily sludge pyrolysis residue was used to stabilize them to reduce the leaching toxicity of these heavy metals. The pyrolysis residue is a carbonaceous composite containing a large amount of nano-FeS, Fe1-xS, CaS, etc., which has the potential to stabilize the heavy metals in lead slag. It was shown that heavy metals As, Zn, Pb and Cd in lead slag could be efficiently and synchronously adsorbed on the surface of pyrolysis residue, reducing the leaching toxicity of these heavy metals in lead slag. When the weight ratio of pyrolysis residueis is 4% and liquid-solid ratio is 10:100, the leaching concentrations of As, Zn, Pb and Cd in the lead slag can be reduced from 0.7202, 3.5120, 0.3800 and 0.0456 mg/L to 0.0714, 0.1668, 0.0262 and 0.0038 mg/L, respectively, which are lower than the surface water environmental quality standards (GB 3838—2002 ) in the Ⅳ level limit value. The reduction of leaching concentration of As, Zn, Pb and Cd in lead slag is due to the reaction of As in lead slag with Ca2+ and Fe2+ on the surface of pyrolysis slag to produce stable calcium arsenate and ferrous arsenate in situ, and the reaction of Zn2+, Pb2+ and Cd2+ in lead slag with S2- on the surface of pyrolysis slag to produce stable ZnS, PbS and CdS in situ, which improves the stability of As, Zn, Pb and Cd in lead slag.
[1] | 赵成, 朱军, 王正民, 等. 重要有色金属冶炼废渣的特征及处理技术[J]. 矿产综合利用, 2019(6):1-6. doi: 10.3969/j.issn.1000-6532.2019.06.001 ZHAO C, ZHU J, WANG Z M, et al. Characteristics and treatment technology of non-ferrous heavy metal smelting slag[J]. Multipurpose Utilization of Mineral Resources, 2019(6):1-6. doi: 10.3969/j.issn.1000-6532.2019.06.001 |
[2] | 朱军, 李维亮, 刘曼博, 等. 锌湿法冶炼渣的污染物分析及综合利用技术[J]. 矿产综合利用, 2020(4):59-65. doi: 10.3969/j.issn.1000-6532.2020.04.009 ZHU J, LI W L, LIU M B, et al. Analysis of contaminants and comprehensive utilization technology of zinc hydrometallurgical slag[J]. Multipurpose Utilization of Mineral Resources, 2020(4):59-65. doi: 10.3969/j.issn.1000-6532.2020.04.009 |
[3] | 缑明亮, 夏丹. 陕西某锌冶炼厂锌冶炼渣综合利用[J]. 矿产综合利用, 2020(4):147-151. doi: 10.3969/j.issn.1000-6532.2020.04.025 GOU M L, XIA D. Study on comprehensive utilization of zinc smelting slag in a zinc smelter in Shaanxi province[J]. Multipurpose Utilization of Mineral Resources, 2020(4):147-151. doi: 10.3969/j.issn.1000-6532.2020.04.025 |
[4] | 顾丝雨, 刘维, 韩俊伟, 等. 含锌冶炼渣综合利用现状及发展趋势[J/OL]. 矿产综合利用: 1-12 2-05-09]. GU S Y, LIU W, HAN J W, et al. Current situation and development trend of comprehensive utilization of zinc smelting slag[J/OL]. Multipurpose Utilization of Mineral Resources: 1-12[2022-05-09]. |
[5] | 陈灿, 谢伟强, 李小明, 等. 水泥、粉煤灰及生石灰固化/稳定处理铅锌废渣. 环境化学, 2015, 34(8): 1553-1560. CHEN C, XIE W Q, LI X M, et al. Solidification/stabilization of Pb and Zn in tailing waste using cement, fly ash and quick lime[J]. Environmental Chemistry, 2015, 34(8): 1553-1560. |
[6] | 闫潇, 刘兴宇, 张明江, 等. 分离自活性污泥的硫酸盐还原菌用于铅锌冶炼渣重金属污染修复[J]. 微生物学通报, 2019, 46(8):1907-1916. doi: 10.13344/j.microbiol.china.190283 YAN X, LIU X Y, ZHANG M J, et al. Remediation of heavy metal pollution by sulfate reducing bacteria (SRB) isolated from activated sludge in lead-zinc smelter slag[J]. Microbiology China, 2019, 46(8):1907-1916. doi: 10.13344/j.microbiol.china.190283 |
[7] | 于冰冰, 颜湘华, 王兴润, 等. 不同材料对铅锌冶炼渣中Zn, Cd和As的稳定化效应[J]. 环境工程, 2020, 38(8):8. YU B B, YAN X H, WANG X R, et al. Effect of different immobilizing materials on Zn, Cd and As in lead-zinc smelting slags[J]. Environmental Engineering, 2020, 38(8):8. |
[8] | LI E, YANG T, WANG Q, et al. Long-term stability of arsenic calcium residue (ACR) treated with FeSO4 and H2SO4: Function of H+ and Fe (Ⅱ)[J]. Journal of Hazardous Materials, 2021, 420:126549. doi: 10.1016/j.jhazmat.2021.126549 |
[9] | LIN Y, WU B, PING N, et al. Stabilization of arsenic in waste slag using FeCl2 or FeCl3 stabilizer[J]. RSC Advances, 2017, 7(87):54956-54963. doi: 10.1039/C7RA10169D |
[10] | Kim S H, Jeong S, Chung H, et al. Stabilization mechanism of arsenic in mine waste using basic oxygen furnace slag: The role of water contents on stabilization efficiency[J]. Chemosphere, 2018, 208:916-921. doi: 10.1016/j.chemosphere.2018.05.173 |
[11] | ZHANG G, YANG H F, LI Z, et al. Comparative investigation on removal of thallium(Ⅰ) from wastewater using low-grade pyrolusite and pyrolysis residue derived from oily sludge: Performance, mechanism and application[J]. Groundwater for Sustainable Development, 2022, 16:100713. doi: 10.1016/j.gsd.2021.100713 |
[12] | 杨慧芬, 李真, 付鹏, 等. 罐底油泥热解产物高附加值利用途径[J]. 环境工程学报, 2021, 15(2):717-726. doi: 10.12030/j.cjee.202003141 YANG H F, LI Z, FU P, et al. High value-added utilization approach of pyrolysis products generated by tank bottom oily sludge[J]. Chinese Journal of Environmental Engineering, 2021, 15(2):717-726. doi: 10.12030/j.cjee.202003141 |
[13] | 赵瑜, 谢贤, 童雄. 基于工艺矿物学的某铅锌尾矿中资源综合回收可行性研究[J]. 矿产综合利用, 2021(4):154-158. doi: 10.3969/j.issn.1000-6532.2021.04.024 ZHAO Y, XIE X, TONG X. Feasibility study on multipurpose recovery of resource in lead and zinc tailings based on process mineralogy[J]. Multipurpose Utilization of Mineral Resources, 2021(4):154-158. doi: 10.3969/j.issn.1000-6532.2021.04.024 |
XRD spectrum of pyrolysis residue of oily sludge
Effect of pyrolysis residue dosage on leaching toxicity of As(a), Zn(b), Pb(c) and Cd(d) and pH value(e)
Effect of liquid-solid ratio on leaching toxicity of As, Zn, Pb and Cd
Changes of As speciations in lead slag before and after stabilization
Changes of speciations of Zn, Cd and Pb in lead slag before and after stabilization