2022 Vol. 38, No. 9
Article Contents

ZHANG Feipeng, CHEN Xingpeng, WU Jiapeng, LUO Rong, LI Huishen, ZHANG Wenting. Structural characteristics and physical simulation of X-shaped normal faults[J]. Marine Geology Frontiers, 2022, 38(9): 48-58. doi: 10.16028/j.1009-2722.2021.158
Citation: ZHANG Feipeng, CHEN Xingpeng, WU Jiapeng, LUO Rong, LI Huishen, ZHANG Wenting. Structural characteristics and physical simulation of X-shaped normal faults[J]. Marine Geology Frontiers, 2022, 38(9): 48-58. doi: 10.16028/j.1009-2722.2021.158

Structural characteristics and physical simulation of X-shaped normal faults

  • The X-shaped normal fault is a common extensional tectonic fracture. However, its geometric characteristics, formation process, and genetic mechanism are lack of systematic research. Based on fine interpretation of seismic data and physical modelling, the geometric characteristics are clarified, the formation process is reconstructed, the formation mechanism is confirmed, and the reservoir control effect is discussed. The research result indicates that the X-shaped normal fault can be divided into two types: incipient X-shaped normal faults and the inherited X-shaped normal faults. The inherited X-shaped normal faults are formed by the reactivation of basement faults, including two modes of differential extension and bidirectional uniform extension. The incipient X-shaped normal faults are formed under the stress background whose tensile stress vs shear stress ratio is 1:2 ~ 2:1. In addition, the inherited X-shaped normal faults have advantages of good oil and gas migration and reservoir reconstruction. Meanwhile, they form various traps and feature “multi-storey”-styled oil-gas accumulation. This research provided a reference for hydrocarbon exploration in Bohai Bay basin, enriched the theoretical understanding of the structural patterns with a geological cue for fine structural interpretation of similar cases.

  • 加载中
  • [1] ANDERSON E M. The dynamics of faulting and dyke formation[M]. London:Oliver and Boyd, 1951.

    Google Scholar

    [2] FERRILL D A,MORRIS A P,STAMATAKOS J A,et al. Crossing conjugate normal faults[J]. AAPG Bulletin,2000,10(84):1543-1559.

    Google Scholar

    [3] FERRILL D A,MORRIS A P,MCGINNIS R N. Crossing conjugate normal faults in field exposures and seismic date[J]. AAPG Bulletin,2009,93(11):1471-1488. doi: 10.1306/06250909039

    CrossRef Google Scholar

    [4] SCHWARZ H U,KILFITT F W. Confluence and intersection of interacting conjugate faults:a new concept based on analogue experiments[J]. Journal of Structural Geology,2008,30(9):1126-1137. doi: 10.1016/j.jsg.2008.05.005

    CrossRef Google Scholar

    [5] BRETAN P G,NICOL A,WALSH J J,et al. Origin of some conjugate or “X” fault structures[J]. the Leading Edge,2012,15(7):812,814,816.

    Google Scholar

    [6] ÇIFTÇI N B,LANGHI L. Evolution of the hourglass structures in the Laminaria High,Timor Sea:implications for hydrocarbon traps[J]. Journal of Structural Geology,2012,36(36):55-70.

    Google Scholar

    [7] 周天伟,周建勋. 南堡凹陷晚新生代X型断层形成机制及其对油气运聚的控制[J]. 大地构造与成矿学,2008,32(1):20-27. doi: 10.3969/j.issn.1001-1552.2008.01.003

    CrossRef Google Scholar

    [8] 余一欣,周心怀,汤良杰,等. 渤海湾地区X型正断层及油气意义[J]. 地质学报,2009,8(83):1083-1088.

    Google Scholar

    [9] 包项,季建清,陶涛,等. 渤海湾盆地沉积层中X型正断层的发育特征与油气意义[J]. 地质科学,2010,45(2):395-410. doi: 10.3969/j.issn.0563-5020.2010.02.004

    CrossRef Google Scholar

    [10] YU F S,KOYI H. Theoretical and experimental estimation of geometric relationship of non-parallel conjugate normal faults[J]. Tectonophysics,2017,703/704:85-97. doi: 10.1016/j.tecto.2017.03.009

    CrossRef Google Scholar

    [11] 何永垚,王英民,卿元华,等. 琼东南盆地X形共轭正断裂及其油气勘探意义[J]. 新疆石油地质,2012,33(5):527-530.

    Google Scholar

    [12] YU F S,KOYI H,ZHANG X T. Intersection patterns of normal faults in the Lufeng Sag of Pearl River Mouth Basin,China:insights from 4D physical simulations[J]. Journal of Structural Geology,2016,93:67-90. doi: 10.1016/j.jsg.2016.10.007

    CrossRef Google Scholar

    [13] 李理,赵利,刘海剑,等. 渤海湾盆地晚古生代—新生代伸展和走滑构造及深部背景[J]. 地质科学,2015,50(2):446-472. doi: 10.3969/j.issn.0563-5020.2015.02.007

    CrossRef Google Scholar

    [14] 漆家福. 渤海湾新生代盆地的两种构造系统及其成因解释[J]. 中国地质,2004,33(1):15-22. doi: 10.3969/j.issn.1000-3657.2004.01.002

    CrossRef Google Scholar

    [15] 万桂梅,汤良杰,周心怀,等. 渤海海域新近纪—第四纪断裂特征及形成机制[J]. 石油学报,2010,31(4):591-595. doi: 10.7623/syxb201004012

    CrossRef Google Scholar

    [16] CAINE J S,EVANS J P,FORSTER C B. Fault zone architecture and permeability structure[J]. Geology,1996,24(11):1025-1028. doi: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2

    CrossRef Google Scholar

    [17] WOODS E P. Vulcan Subbasin fault styles:implications for hydrocarbon migration and entrapment[J]. Australian Petroleum Production and Exploration Association Journal,1992,32(1):138-158.

    Google Scholar

    [18] MORRIS A,FERRILL D A,HENDERSON D B. Slip tendency analysis and fault reactivation[J]. Geology,1996,24(3):275-278. doi: 10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(3)

Article Metrics

Article views(1482) PDF downloads(160) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint