Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 2
Article Contents

YU Haoyong, ZHU Yangge, LI Songqing, HU Xiaoxing. Effect and Mechanism of Dodecyl Trimethylammonium Tromide in Flotation Separation of Apatite and Potassium Feldspar[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 74-79. doi: 10.13779/j.cnki.issn1001-0076.2022.02.009
Citation: YU Haoyong, ZHU Yangge, LI Songqing, HU Xiaoxing. Effect and Mechanism of Dodecyl Trimethylammonium Tromide in Flotation Separation of Apatite and Potassium Feldspar[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 74-79. doi: 10.13779/j.cnki.issn1001-0076.2022.02.009

Effect and Mechanism of Dodecyl Trimethylammonium Tromide in Flotation Separation of Apatite and Potassium Feldspar

More Information
  • In this paper, quaternary ammonium salt dodecyl trimethyl ammonium bromide (DTAB) was used as collector, and the flotation behavior and mechanism of potassium feldspar and apatite in DTAB system were comparatively investigated. The flotation test results of pure minerals show that DTAB has excellent collecting performance for potassium feldspar in the range of pulp pH value from 6 to 11, while apatite has poor floatability. When the dosage of DTAB is 3×10-5 mol/L and the pH is 9.45, the flotation recoveries of potassium feldspar and apatite are 93% and 2% respectively. From the artificial mixed ore with potassium feldspar and apatite in the mass ratio of 3 : 1, the apatite concentrate with P2O5 content of 34.85%, Al2O3 content of 1.52%, P2O5 recovery of 91.46% can be obtained, indicating that DTAB can realize the selective separation of potassium feldspar and apatite. The flotation test results of artificial mixed ore show that DTAB can realize the selective separation of potassium feldspar and apatite. The results of Zeta potential, XPS and FTIR results show that DTAB is selectively adsorbed on the surface of potassium feldspar through physical adsorption, but less on the surface of apatite. Microcalorimetric results show that the reaction between DTAB and potassium feldspar is more intense than that of apatite. The molecular simulation results show that the adsorption effect of dodecyl trimethyl ammonium bromide on potassium feldspar surface is obviously stronger than that on apatite.

  • 加载中
  • [1] 陈卫东, 张玉霞, 丛百明, 等. 不同磷肥处理下苜蓿根颈抗寒性及在低温胁迫下糖类物质变化[J]. 中国农业科技导报, 2022, 24(2): 210-217.

    Google Scholar

    CHEN W D, ZHANG Y X, CONG B M, et al. Cold resistance of alfalfa root neck under different phosphate fertilizer treatments and changes of carbohydrate under low temperature stress[J]. Journal of Agricultural Science and Technology, 2022, 24(2): 210-217.

    Google Scholar

    [2] Andelkovic IB, Kabiri S, Tavakkoli E, et al. Graphene oxide-Fe(Ⅲ) composite containing phosphate-A novel slow release fertilizer for improved agriculture management[J]. Journal of Cleaner Production, 2018, 185: 97-104. doi: 10.1016/j.jclepro.2018.03.050

    CrossRef Google Scholar

    [3] 汤家焰, 何嘉宁, 张少杰, 等. 磷矿浮选中磷灰石和石英的交互行为[J]. 非金属矿, 2021, 44(6): 69-73. doi: 10.3969/j.issn.1000-8098.2021.06.019

    CrossRef Google Scholar

    TANG J Y, HE J N, ZHANG S J, et al. Interaction between apatite and quartz in phosphate ore flotation[J]. Non-Metallic Mines, 2021, 44(6): 69-73. doi: 10.3969/j.issn.1000-8098.2021.06.019

    CrossRef Google Scholar

    [4] 易雕, 王雪. 几种羟肟酸捕收剂与氟磷灰石作用机理研究[J]. 贵州科学, 2020, 38(5): 85-88. doi: 10.3969/j.issn.1003-6563.2020.05.021

    CrossRef Google Scholar

    YI D, WANG X. Mechanism of the interaction between hydroxamic acid collectors and fluorapatite[J]. Guizhou Science, 2020, 38(5): 85-88. doi: 10.3969/j.issn.1003-6563.2020.05.021

    CrossRef Google Scholar

    [5] 郭萧轲, 葛英勇, 郭文宾, 等. 金属离子对磷矿醚胺反浮选脱硅的影响[J]. 化工矿物与加工, 2019, 48(2): 33-36+40.

    Google Scholar

    GUO X K, GE Y Y, GUO W B, et al. Effect of metal ions on desiliconization of apatite by reverse flotation with ether amine as a collector[J]. Industrial Minerals & Processing, 2019, 48(2): 33-36+40.

    Google Scholar

    [6] 李丰, 田鹏杰. 某钙质胶磷矿反浮选试验及机理研究[J]. 化工矿物与加工, 2016, 45(10): 8-10.

    Google Scholar

    LI F, TIAN P J. Research on reverse flotation test and mechanism of a siliceous collopphanite[J]. Industrial Minerals & Processing, 2016, 45(10): 8-10.

    Google Scholar

    [7] 李宁, 付磊, 王涛, 等. 硅酸盐型胶磷矿单一反浮选工艺研究及工业化应用[J]. 有色金属(选矿部分), 2019(5): 90-94.

    Google Scholar

    LI N, FU L, WANG T, et al. Study on SLR flotation technology of silicate type phosphate ore and its industrial application[J]. Nonferrous Metals(Mineral Processing Section), 2019(5): 90-94.

    Google Scholar

    [8] 邓坤, 葛英勇, 郭萧轲, 等. 某硅镁质胶磷矿正-反浮选试验研究[J]. 矿冶工程, 2020, 40(4): 42-44. doi: 10.3969/j.issn.0253-6099.2020.04.010

    CrossRef Google Scholar

    DENG K, GE Y Y, GUO X K, et al. Direct and reverse flotation of silicon magnesium collophanite[J]. Mining and Metallurgical Engineering, 2020, 40(4): 42-44. doi: 10.3969/j.issn.0253-6099.2020.04.010

    CrossRef Google Scholar

    [9] 杨稳权, 张华, 赵凤婷. 云南硅质胶磷矿正浮选浮磷脱硅研究[J]. 化工矿物与加工, 2020, 49(5): 25-27.

    Google Scholar

    YANG W Q, ZHANG H, ZHAO F G. Study on desilication of direct flotation of siliceous phosphate rock in Yunan[J]. Industrial Minerals & Processing, 2020, 49(5): 25-27.

    Google Scholar

    [10] 朱一民, 陈通, 闫啸, 等. 新型磷灰石常温捕收剂的浮选试验研究[J]. 矿产综合利用, 2017(6): 39-43. doi: 10.3969/j.issn.1000-6532.2017.06.009

    CrossRef Google Scholar

    ZHU Y M, CHEN T, YAN X, et al. Collecting performance of new collectors on apatite at room temperature[J]. Comprehensive Utilization of Mineral Resources, 2017(6): 39-43. doi: 10.3969/j.issn.1000-6532.2017.06.009

    CrossRef Google Scholar

    [11] WANG Y, HU Y, HE P, et al. Reverse flotation for removal of silicates from diasporic-bauxite[J]. Minerals Engineering, 2004, 17(5): 63-68.

    Google Scholar

    [12] 徐伟, 秦红, 田言, 等. WFC-01反浮选贵州某硅钙质胶磷矿及作用机理研究[J]. 化工矿物与加工, 2018, 47(3): 9-11+27.

    Google Scholar

    XU W, QIN H, TIAN Y, et al. Study on reverse flotation test of WFC-01 for a siliceous and calcareous phosphate ore from Guizhou and its mechanism[J]. Industrial Minerals & Processing, 2018, 47(3): 9-11+27.

    Google Scholar

    [13] 郭芳, 李军, 等. 反浮选法提高细粒径硅钙质磷矿品位[J]. 北京科技大学学报, 2010, 32(11): 1388-1392.

    Google Scholar

    GUO F, LI J, et al. Improving the grade of asiliceous-calcareous phosphate ore with fine size by Reverse flotation method[J]. Journal of University of Science and Technology Beijing, 2010, 32(11): 1388-1392.

    Google Scholar

    [14] 凌石生, 刘四清. 铝土矿反浮选脱硅药剂评述[J]. 矿产保护与利用, 2008(3): 49-54.

    Google Scholar

    LIN S S, LIU S Q. A review of reagents on desilication of bauxite ores by reverse flotation[J]. Conservation and Utilization of Mineral Resources, 2008(3): 49-54.

    Google Scholar

    [15] 黄志强. Gemini有机硅捕收剂的合成及其对铝硅酸盐矿物的浮选性能研究[D]. 长沙: 中南大学, 2010: 1-85.

    Google Scholar

    HUANG Z Q. Synthesis of Gemini silicone collector and its flotation performance for aluminosilicate minerals[D]. Changsha: Central South University, 2010: 1-85.

    Google Scholar

    [16] 刘鸣, 葛英勇, 孟雨, 等. 湖北某磷矿反浮选钾长石试验研究[J]. 硅酸盐通报, 2018, 37(2): 644-648.

    Google Scholar

    LIU M, GE Y Y, MENG Y, et al. Experimental study on reverse flotation of potassium feldspar from phosphate ore in Hubei[J]. Bulltein of the Chinese Ceramic Society, 2018, 37(2): 644-648.

    Google Scholar

    [17] PAWLIK M, LASKOWSKI JS. Coal reverse flotation. part Ⅰ. adsorption of dodecyltrimethyl ammonium bromide and humic acids onto coal and silica[J]. Coal Preparation, 2003, 23: 91-112.

    Google Scholar

    [18] 匡敬忠, 马强, 刘鹏飞, 等. 微量热法研究白钨矿在NaOH溶液中的溶解及其与油酸钠作用的热动力学[J]. 稀有金属, 2021, 45(3): 322-332.

    Google Scholar

    KUANG J Z, MA Q, LIU P F, et al. Microcalorimetric study on the dissolution of scheelite in NaOH solution and the thermokinetics of its interaction with sodium oleate[J]. Chinese Journal of Rare Metals, 2021, 45(3): 322-332.

    Google Scholar

    [19] 刘鹏飞. 白钨矿、萤石、方解石的溶解特性及微量热动力学的研究[D]. 赣州: 江西理工大学, 2018: 1-69.

    Google Scholar

    LIU P F. Study on the dissolution characteristic and microcalorimetry kinetics of scheelite, fluorite and calcite[D]. Ganzhou: Jiangxi University of Science and Technology, 2018: 1-69.

    Google Scholar

    [20] 蓝丽红, 陈建华. 含杂质方铅矿吸附黄药的微量热动力学研究(英文)[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(1): 272-281.

    Google Scholar

    LAN L H, CHEN J H. Microthermokinetic study of xanthate adsorption on impurity-doped galena[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(1): 272-281.

    Google Scholar

    [21] 徐花兰, 郭瑞光, 唐长斌. 镀锌钢表面氟锆酸盐/十二烷基三甲基溴化铵转化膜制备与耐蚀性研究[J]. 材料保护, 2020, 53(12): 49-54+71.

    Google Scholar

    XU H L, GUO R G, TANG C B. Preparation and corrosion resistance of fluorozirconate / DTAB conversion coatings on galvanized steels surface[J]. Materials Protection | Mater Protec, 2020, 53(12): 49-54+71.

    Google Scholar

    [22] LIU C, ZHU L, FU W, et al. Investigations of amino trimethylene phosphonic acid as a green and efficient depressant for the flotation separation of apatite from calcite[J]. Minerals Engineering, 2022, 181: 107552.

    Google Scholar

    [23] SONI A, PATEY G N. Simulations of water structure and the possibility of ice nucleation on selected crystal planes of K-feldspar[J]. The Journal of Chemical Physics, 2019, 150(21): 214501.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(1996) PDF downloads(111) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint