2021 Vol. 40, No. 12
Article Contents

ZHANG Yiying, GUO Changbao, YANG Zhihua, WU Ruian, YAN Yiqiu, XU Zhengxuan, WANG Zhewei. Development characteristics and reactivation trend of Zhama ancient landslide in Batang, Sichuan[J]. Geological Bulletin of China, 2021, 40(12): 2002-2014.
Citation: ZHANG Yiying, GUO Changbao, YANG Zhihua, WU Ruian, YAN Yiqiu, XU Zhengxuan, WANG Zhewei. Development characteristics and reactivation trend of Zhama ancient landslide in Batang, Sichuan[J]. Geological Bulletin of China, 2021, 40(12): 2002-2014.

Development characteristics and reactivation trend of Zhama ancient landslide in Batang, Sichuan

More Information
  • The Zhama ancient landslide is a large-scale one located in the Batang fault in western Sichuan. The remote sensing interpretation, field investigation and drilling revealed that the Zhama ancient landslide has a volume of about 2840×104 m3. The Zhama ancient landslide has local resurrection features, which can be divided into two subregions, the rear collapse(Ⅰ) and slide body(Ⅱ). According to the landslide deformation, the slide body can be divided into the middle part of the local stable region(Ⅱ1) and the front of the strong deformation region(Ⅱ2, Ⅱ3). Ⅱ2 and Ⅱ3 are bounded by the gullies at the front edge of the slope. Drilling revealed that two-level slip zones were developed in the Zhama landslide body. The location of two-level slip zones revealed by ZK1 was at 31.8~33.4 m and 77.7~81 m, and that by ZK2 was at 46.6~47.6 m and 68.2~69.8 m. The deformation of the Zhama ancient landslide was affected by heavy rainfall, earthquakes, and human engineering activities. At present, it is mainly local deformation.Secondary sliding occurs in the steep slope part of the front edge of the slope during the flood period. In the middle part, the landslide was induced by road excavation. The erosion ditch on the mountain caused small-scale debris flow under the action of heavy rainfall. The FLAC3D numerical simulation of the Zhama ancient landslide indicates that under natural conditions, the displacement at the trailing edge of the landslide body is relatively large, causing the formation of moving landslide; under heavy rain conditions, shear deformation occurs on the trailing edge and the toe of the landslide body, and it is easy to produce a through sliding surface and a traction landslide along this surface. It is suggested from comprehensive analysis that under the influence of strong earthquakes, heavy rainfall, and human engineering activities, the landslide may resurrect as a whole along the sliding surface.

  • 加载中
  • [1] 王思敬. 地球内外动力耦合作用与重大地质灾害的成因初探[J]. 工程地质学报, 2002, (2): 115-117. doi: 10.3969/j.issn.1004-9665.2002.02.001

    CrossRef Google Scholar

    [2] 黄润秋, 李为乐. "5·12"汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12): 2585-2592. doi: 10.3321/j.issn:1000-6915.2008.12.028

    CrossRef Google Scholar

    [3] 郭长宝, 杜宇本, 佟元清, 等. 青藏高原东缘理塘乱石包高速远程滑坡发育特征与形成机理[J]. 地质通报, 2016, 35(8): 1332-1345. doi: 10.3969/j.issn.1671-2552.2016.08.014

    CrossRef Google Scholar

    [4] 张永双, 吴瑞安, 郭长宝, 等. 古滑坡复活问题研究进展与展望[J]. 地球科学进展, 2018, 33(7): 728-740.

    Google Scholar

    [5] 郭长宝, 吴瑞安, 李雪, 等. 川西日扎潜在巨型岩质滑坡发育特征与形成机理研究[J]. 工程地质学报, 2020, 28(4): 772-783.

    Google Scholar

    [6] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, (3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    CrossRef Google Scholar

    [7] Sassa K. International programme on landslides[J]. Landslides, 2013, 1(2): 3-24.

    Google Scholar

    [8] 吴瑞安. 岷江上游古滑坡复活机理与危险性评价[D]. 中国地质科学院博士学位论文, 2019.

    Google Scholar

    [9] Negi Indervir S, Kumar K, Kathait A, et al. Cost assessment of losses due to recent reactivation of Kaliasaur landslide on National Highway 58 in Garhwal Himalaya[J]. Natural Hazards, 2013, 68(2): 901-914. doi: 10.1007/s11069-013-0663-5

    CrossRef Google Scholar

    [10] Iverson R M, George D L, Allstadt K, et al. Landslide mobility and hazards: implications of the 2014 Oso disaster[J]. Earth & Planetary Science Letters, 2015, 412: 197-208.

    Google Scholar

    [11] 孙建霖. 时序InSAR技术及其在滑坡形变监测中的应用[D]. 兰州大学硕士学位论文, 2019.

    Google Scholar

    [12] 龙维, 陈剑, 王鹏飞, 等. 金沙江上游特米大型古滑坡的成因及古地震参数反分析[J]. 地震研究, 2015, 38(4): 568-575, 697. doi: 10.3969/j.issn.1000-0666.2015.04.007

    CrossRef Google Scholar

    [13] 陈剑, 崔之久, 陈瑞琛, 等. 金沙江上游特米古滑坡堰塞湖成因与演化[J/OL]. 地学前缘, 2020, https://doi.org/10.13745/j.esf.sf.2020.9.9.

    Google Scholar

    [14] 任三绍, 郭长宝, 张永双, 等. 川西巴塘茶树山滑坡发育特征及形成机理[J]. 现代地质, 2017, 31(5): 978-989. doi: 10.3969/j.issn.1000-8527.2017.05.009

    CrossRef Google Scholar

    [15] 周荣军, 陈国星, 李勇, 等. 四川西部理塘-巴塘地区的活动断裂与1989年巴塘6.7级震群发震构造研究[J]. 地震地质, 2005, (1): 31-43. doi: 10.3969/j.issn.0253-4967.2005.01.004

    CrossRef Google Scholar

    [16] 傅广海. 四川省甘孜州温泉类型、成因及旅游开发模式研究[D]. 成都理工大学博士学位论文, 2009.

    Google Scholar

    [17] 白永健, 李明辉, 王东辉, 等. 金沙江中游巴塘县地质灾害发育特征及成灾规律分析[J]. 中国地质灾害与防治学报, 2014, 25(2): 103-109.

    Google Scholar

    [18] 伍先国, 蔡长星. 金沙江断裂带新活动和巴塘6.5级地震震中的确定[J]. 地震研究, 1992, (4): 401-410.

    Google Scholar

    [19] Cruden D M, Varnes D J. Landslide types and processes, special report, transportation research board[J]. National Academy of Sciences, 1996, 247: 36-75.

    Google Scholar

    [20] Bathrellos G D, Gaki-Papanastassiou K, Skilodimou H D, et al. Potential suitability for urban planning and industry development using natural hazard maps and geological-geomorphological parameters[J]. Environmental Earth Sciences, 2012, 66(2): 537-548. doi: 10.1007/s12665-011-1263-x

    CrossRef Google Scholar

    [21] 张永双, 成余粮, 姚鑫, 等. 四川汶川地震-滑坡-泥石流灾害链形成演化过程[J]. 地质通报, 2013, 32(12): 1900-1910.

    Google Scholar

    [22] 杜飞, 任光明, 夏敏, 等. 地震作用诱发老滑坡复活机制的数值模拟[J]. 山地学报, 2015, 33(2): 233-239.

    Google Scholar

    [23] 宋磊, 左三胜, 丁军, 等. 四川都江堰红梅村滑坡复活成因与机制分析[J]. 中国地质灾害与防治学报, 2012, 23(2): 34-37. doi: 10.3969/j.issn.1003-8035.2012.02.007

    CrossRef Google Scholar

    [24] Chen J, Dai F C, Lv T Y, et al. Holocene landslide-dammed lake deposits in the Upper Jinsha River, SE Tibetan Plateau and their ages[J]. Quaternary International, 2013, (298): 107-113.

    Google Scholar

    [25] 姚贺冬, 石崇, 徐卫亚, 等. 古水水电站争岗堆积体滑坡复活条件分析[J]. 河海大学学报(自然科学版), 2015, 43(1): 28-33. doi: 10.3876/j.issn.1000-1980.2015.01.006

    CrossRef Google Scholar

    [26] 徐锡伟, 张培震, 闻学泽, 等. 川西及其邻近地区活动构造基本特征与强震复发模型[J]. 地震地质, 2005, (3): 446-461. doi: 10.3969/j.issn.0253-4967.2005.03.010

    CrossRef Google Scholar

    [27] Keefer D K. Landslides caused by earthquakes[J]. Geological Society of America Bulletin, 1984, 95: 406-421. doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2

    CrossRef Google Scholar

    [28] 胡新丽, 殷坤龙. 大型水平顺层滑坡形成机制数值模拟方法——以重庆钢铁公司古滑坡为例[J]. 山地学报, 2001, (2): 175-179. doi: 10.3969/j.issn.1008-2786.2001.02.017

    CrossRef Google Scholar

    [29] 胡卸文, 黄润秋, 朱海勇, 等. 唐家山堰塞湖库区马铃岩滑坡地震复活效应及其稳定性研究[J]. 岩石力学与工程学报, 2009, 28(6): 1270-1278. doi: 10.3321/j.issn:1000-6915.2009.06.024

    CrossRef Google Scholar

    [30] 李育枢, 钟东, 周灏. 唐家湾东古滑坡成因与现代复活机制分析[J]. 地下空间与工程学报, 2012, 8(3): 652-658.

    Google Scholar

    [31] Wang P F, Chen J, Dai F C, et al. Chronology of relict lake deposits around the Suwalong paleolandslide in the upper Jinsha River, SE Tibetan Plateau: Implications to Holocene tectonic perturbations[J]. Geomorphology, 2014, 217: 193-203. doi: 10.1016/j.geomorph.2014.04.027

    CrossRef Google Scholar

    [32] 薛德敏. 西南地区典型巨型滑坡形成与复活机制研究[D]. 成都理工大学硕士学位论文, 2010.

    Google Scholar

    [33] 谢守益, 徐卫亚. 降雨诱发滑坡机制研究[J]. 武汉水利电力大学学报, 1999, (1): 22-24.

    Google Scholar

    [34] Guo C B, Zhang Y S, Li X, et al. Reactivation of giant Jiangdingya ancient landslide in Zhouqu County, Gansu Province, China[J]. Landslide, 2020, 17: 179-190. doi: 10.1007/s10346-019-01266-9

    CrossRef Google Scholar

    [35] 汤明高. 山区河道型水库塌岸预测评价方法及防治技术研究[D]. 成都理工大学博士学位论文, 2007.

    Google Scholar

    [36] 代贞伟, 李滨, 陈云霞, 等. 三峡大树场镇堆积层滑坡暴雨失稳机理研究[J]. 水文地质工程地质, 2016, 43(1): 149-156.

    Google Scholar

    [37] 张永双, 吴瑞安, 任三绍. 降雨优势入渗通道对古滑坡复活的影响[J]. 岩石力学与工程学报, 2021, 40(4): 777-789.

    Google Scholar

    [38] 杨志华, 吴瑞安, 郭长宝, 等. 川西巴塘断裂带地质灾害效应与典型滑坡发育特征[J/OL]. 中国地质, 2021, http://kns.cnki.net/kcms/detail/11.1167.P.20210111.1514.010.html.

    Google Scholar

    [39] 贾俊, 朱立峰, 胡炜. 甘肃黑方台地区灌溉型黄土滑坡形成机理与运动学特征——以焦家崖头13号滑坡为例[J]. 地质通报, 2013, 32(12): 1968-1975.

    Google Scholar

    [40] 陈春利, 贺凯, 李同录. 坡脚开挖诱发古滑坡复活的机制分析[J]. 西北地质, 2014, 47(1): 255-260. doi: 10.3969/j.issn.1009-6248.2014.01.024

    CrossRef Google Scholar

    [41] 龙建辉, 张吉宁. 煤矿井巷上方大型老滑坡复活机理与致灾过程[J]. 采矿与安全工程学报, 2015, 32(3): 511-517.

    Google Scholar

    中国国家标准化管理委员会. 《中国地震动峰值加速度区划图》(GB 18306—2015). 2015.

    Google Scholar

    中国国家标准化管理委员会. 《滑坡防治工程勘查规范》(GB/T 32864—2016). 2016.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(3)

Article Metrics

Article views(2143) PDF downloads(21) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint