2021 Vol. 40, No. 12
Article Contents

YANG Zongji, DONG Wufan, LIU Jinfeng, YOU Yong. Genetic types and distribution of glacial lakes in western Sichuan and eastern Tibet[J]. Geological Bulletin of China, 2021, 40(12): 2071-2079.
Citation: YANG Zongji, DONG Wufan, LIU Jinfeng, YOU Yong. Genetic types and distribution of glacial lakes in western Sichuan and eastern Tibet[J]. Geological Bulletin of China, 2021, 40(12): 2071-2079.

Genetic types and distribution of glacial lakes in western Sichuan and eastern Tibet

  • Global warming has caused dramatic glacial lake expansions and increasing of glacial lake outburst floods (GLOFs) in western Sichuan and eastern Tibet (WSET), indicating that the spatial distribution of glacial lakes in this region need to be ascertained imminently.The overall distribution of glacial lakes of WSET during 2010-2020 has been mapped on the basis of different genetic types by manual visual interpretation method, which mainly involves glacial erosion lakes (GELs), moraine lakes (MLs), and barrier lakes (BLs).The results show that there are total 17737 glacial lakes inventoried in WSET with each area of greater than 50 m2, including 11903 GELs, 5734 MLs and 100 BLs, covering a total area of 7.93×103 km2. Zayü County in Nyinchi, Tibet, as the most densely distributed county of glacial lakes, hosts 2161 glacial lakes, which account for 12.18% of the total number.Additionally, the glacial lakes in Shaluli Mountains and Yarlung Zangbo River basin are the most lake-concentrated ones, accounting for 29.10% (5161 lakes) and 30.73% (5450 lakes) of the total respectively.Meanwhile, GELs and MLs share the similar spatial distribution patterns, and are mostly concentrated at an altitude of 4500~5000 m (50.57% of the total), implying a glacier active area.Most of BLs (77% of the total BLs) are located at the altitude of 4000~5000 m, indicating a negative interaction with the glaciers.Combined with the comprehensive analysis of genetic types of glacial lakes and their relationships with the glaciers, 9 potential dangerous glacial lakes, including 7 MLs and 2 BLs, are preliminarily identified.Regarding the risk of GLOFs in the future, the focus researches, such as investigations, assessments, monitoring, and early warning, should be carried out in the construction and operation of the major infrastructures in WSET.

  • 加载中
  • [1] 吕儒仁, 唐邦兴, 朱平一. 西藏泥石流与环境[M]. 成都: 成都科技大学出版社, 1999.

    Google Scholar

    [2] Nie Y, Pritchard H D, Liu Q, et al. Glacial change and hydrological implications in the Himalaya and Karakoram[J]. Nature RevIews Earth & Environment, 2021, 2: 91-106.

    Google Scholar

    [3] 蒋复初, 吴锡浩, 王书兵, 等. 中国气候雪线空间分布特征[J]. 地质力学学报, 2002, 8: 289-296. doi: 10.3969/j.issn.1006-6616.2002.04.001

    CrossRef Google Scholar

    [4] 秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学辞典[M]. 北京: 气象出版社, 2014.

    Google Scholar

    [5] 王世金, 效存德. 全球冰冻圈灾害高风险区: 影响与态势[J]. 科学通报, 2019, 64(9): 890-900.

    Google Scholar

    [6] Carrivick J L, Tweed F S. A global assessment of the societal impacts of glacier outburst floods[J]. Global and Planetary Change, 2016, 144: 1-16. doi: 10.1016/j.gloplacha.2016.07.001

    CrossRef Google Scholar

    [7] Nie Y, Sheng Y, Liu Q, et al. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015[J]. Remote Sensing of Environment, 2017, 189: 1-13. doi: 10.1016/j.rse.2016.11.008

    CrossRef Google Scholar

    [8] 刘建康, 张佳佳, 高波, 等. 我国西藏地区冰湖溃决灾害综述[J]. 冰川冻土, 2019, 41(5): 1335-1347.

    Google Scholar

    [9] IPCC第五次评估报告第二、二工作组报告发布气候变化影响无处不在[J]. 中国环境科学, 2014, 34(5): 1292.

    Google Scholar

    [10] 王世金, 秦大河, 任贾文. 冰湖溃决灾害风险研究进展及其展望[J]. 水科学进展, 2012, 23(5): 735-742.

    Google Scholar

    [11] Richardson S D, Reynolds J M. An overview of glacial hazards in the Himalayas[J]. Quaternary International, 2000, 65: 31-47.

    Google Scholar

    [12] Byers A C, Rounce D R, Shugar D H, et al. A rockfall-induced glacial lake outburst flood, Upper Barun Valley, Nepal[J]. Landslides, 2019, 16(3): 533-549. doi: 10.1007/s10346-018-1079-9

    CrossRef Google Scholar

    [13] Carey M. Living and dying with glaciers: people's historical vulnerability to avalanches and outburst floods in Peru[J]. Global and Planetary Change, 2004, 47(2/4): 122-134.

    Google Scholar

    [14] 刘建康, 周路旭. 国内外冰碛湖溃决研究进展[J]. 探矿工程(岩土钻掘工程), 2018, 45(8): 44-50. doi: 10.3969/j.issn.1672-7428.2018.08.010

    CrossRef Google Scholar

    [15] 李德基, 游勇. 西藏波密米堆冰湖溃决浅议[J]. 山地研究, 1992, (4): 219-224.

    Google Scholar

    [16] 刘显波. 忠玉乡冰碛湖溃决引发的思考[J]. 中国农业信息, 2014, (7): 178.

    Google Scholar

    [17] 崔鹏, 马东涛, 陈宁生, 等. 冰湖溃决泥石流的形成、演化与减灾对策[J]. 第四纪研究, 2003, (6): 621-628. doi: 10.3321/j.issn:1001-7410.2003.06.005

    CrossRef Google Scholar

    [18] 刘娟, 姚晓军, 高永鹏, 等. 帕隆藏布流域冰湖变化及危险性评估[J]. 湖泊科学, 2019, 31(4): 1132-1143.

    Google Scholar

    [19] 王欣, 刘时银, 姚晓军, 等. 我国喜马拉雅山区冰湖遥感调查与编目[J]. 地理学报, 2010, 65(1): 29-36.

    Google Scholar

    [20] Wang S J, Che Y J, Ma X G. Integrated risk assessment of glacier lake outburst flood(GLOF) disaster over the Qinghai-Tibetan Plateau(QTP)[J]. Landslides, 2020, 17(12): 2849-2863. doi: 10.1007/s10346-020-01443-1

    CrossRef Google Scholar

    [21] 杨成德, 王欣, 魏俊峰, 等. 基于3S技术方法的中国冰湖编目[J]. 地理学报, 2019, 74(3): 544-556.

    Google Scholar

    [22] 张小刚, 杨天军, 田金昌. 川藏公路特殊碎屑流灾害综合防治技术[J]. 地质通报, 2013, 32(12): 2031-2037.

    Google Scholar

    [23] 张永双, 杜国梁, 郭长宝, 等. 川藏交通廊道典型高位滑坡地质力学模式[J]. 地质学报, 2021, 95(3): 605-617. doi: 10.3969/j.issn.0001-5717.2021.03.001

    CrossRef Google Scholar

    [24] 王培清, 黎普明. 藏东南地区地质灾害浅析[J]. 水利水电科技进展, 2002, (4): 21-22, 62. doi: 10.3880/j.issn.1006-7647.2002.04.008

    CrossRef Google Scholar

    [25] 程尊兰, 时亮, 刘建康, 等. 帕隆藏布江上游冰湖分布及其变化[J]. 水土保持通报, 2012, 32(5): 8-12.

    Google Scholar

    [26] 柳金峰, 程尊兰, 陈晓清. 帕隆藏布流域然乌-培龙段冰湖溃决危险性评估[J]. 山地学报, 2012, 30(3): 369-377.

    Google Scholar

    [27] 刘时银, 郭万钦, 许君利. 中国第二次冰川编目数据集(V1.0)[DB/OL]. 国家冰川冻土沙漠科学数据中心(www.ncdc.ac.cn), 2019.

    Google Scholar

    [28] Cook S J, Quincey D J. Estimating the volume of Alpine glacial lakes[J]. Earth Surface Dynamics, 2015, 3(4): 559-575. doi: 10.5194/esurf-3-559-2015

    CrossRef Google Scholar

    [29] O'connor J E, Iii J, Costa J E. Debris flows from failures of Neoglacial-Age Moraine dams in the Three Sisters and Mount Jefferson Wilderness Areas, Oregon[J]. Economic Theory, 2001, 4(1606): 11-40.

    Google Scholar

    [30] 常鸣, 唐川, 窦向阳. 藏东南典型冰湖溃决机制及危险性研究[J]. 南水北调与水利科技, 2017, 15(6): 115-121.

    Google Scholar

    [31] 姚晓军, 刘时银, 孙美平, 等. 20世纪以来西藏冰湖溃决灾害事件梳理[J]. 自然资源学报, 2014, 29(8): 1377-1390.

    Google Scholar

    [32] Shan Y, Chen S, Zhong Q. Rapid prediction of landslide dam stability using the logistic regression method[J]. Landslides, 2020, 17(12): 2931-2956. doi: 10.1007/s10346-020-01414-6

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(4)

Article Metrics

Article views(2303) PDF downloads(8) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint