2014 Vol. 20, No. 4
Article Contents

SUN Xiang-fei, CHEN Yong, WANG Cheng-jun, WANG Xin-tao. THE EFFECT OF SALT-GYPSUM DEHYDRATION ON THE DEVELOPMENT OF SALT DIAPIR: A CASE STUDY OF DONGYING SAG[J]. Journal of Geomechanics, 2014, 20(4): 446-454.
Citation: SUN Xiang-fei, CHEN Yong, WANG Cheng-jun, WANG Xin-tao. THE EFFECT OF SALT-GYPSUM DEHYDRATION ON THE DEVELOPMENT OF SALT DIAPIR: A CASE STUDY OF DONGYING SAG[J]. Journal of Geomechanics, 2014, 20(4): 446-454.

THE EFFECT OF SALT-GYPSUM DEHYDRATION ON THE DEVELOPMENT OF SALT DIAPIR: A CASE STUDY OF DONGYING SAG

  • There is a series of achievements about salt tectonics both at home and abroad. This paper points out that fluid in the tectonics development of the important role of salt, which is based on previous studies and the developmental characteristics of salt tectonics in Dongying sag. It contains a lot of salt-gypsum and salt-gypsum formations. This paper analyzes the characteristic of the salt tectonics according to the core, logging and seismic data. Abnormal high pressure created by salt-gypsum dehydration in stratum, high pressure can be used as a dynamic force fluid flow upward and this contributes to hydraulic fracturing in the overlying strata and can drive the salts material in the process of fluid upwelling upward movement. This paper proposes that salt-gypsum dehydration has an important influence on the formation of the salt tectonics. Based on the effect of salt-gypsum dehydration and overpressure fluid, the history of model of member 4 of Shahejie Formation salt diapir in Dongying sag is established according to seismic cross-section and logging data. Salt tectonics is analyzed during the migration of fluids in the process of development, salt-gypsum dehydration effect in early and mid-salt tectonic development important role.

  • 加载中
  • [1] Trusheim F. Mechanism of salt migration in northern Germany [J]. AAPG Bulletin, 1960, 44(9): 1519~1540.

    Google Scholar

    [2] Rowan M G, Jackson M P A, Trudgill B D. Salt-related fault families and fault welds in the northern Gulf of Mexico [J]. AAPG bulletin, 1999, 83(9): 1454~1484.

    Google Scholar

    [3] Buchanan P G, Bishop D J, Hood D N. Development of salt-related structures in the Central North Sea: Results from section balancing [J]. Geological Society, London, Special Publications, 1996, 100(1): 111~128. doi: 10.1144/GSL.SP.1996.100.01.09

    CrossRef Google Scholar

    [4] Talbot C J, Alavi M. The past of a future syntaxis across the Zagros [J]. Geological Society, London, Special Publications, 1996, 100(1): 89~109. doi: 10.1144/GSL.SP.1996.100.01.08

    CrossRef Google Scholar

    [5] Letouzey J, Colletta B, Vially R. Evolution of salt-related structures in compressional settings[C]//AAPG. Salt tectonics: A global perspective. Tulsa: AAPG, 1995: 41~60.

    Google Scholar

    [6] Vendeville B C, Jackson M P A. The rise of diapirs during thin-skinned extension [J]. Marine and Petroleum Geology, 1992, 9(4): 331~354. doi: 10.1016/0264-8172(92)90047-I

    CrossRef Google Scholar

    [7] Vendeville B C, Jackson M P A. The fall of diapirs during thin-skinned extension [J]. Marine and Petroleum Geology, 1992, 9(4): 354~371. doi: 10.1016/0264-8172(92)90048-J

    CrossRef Google Scholar

    [8] 汤良杰, 金之钧, 贾承造, 等.塔里木盆地多期盐构造与油气聚集[J].中国科学:D辑, 2004, 34(A01):89~97.

    Google Scholar

    TANG Liang-jie, JIN Zhi-jun, JIA Cheng-zao, et al. A lot of salt tectonics and hydrocarbon accumulation in Tarim basin [J]. Science in China: Series D, 2004, 34(A01): 89~97.

    Google Scholar

    [9] 贾承造, 赵文智, 魏国齐, 等.盐构造与油气勘探[J].石油勘探与开发, 2003, 30(2):17~19.

    Google Scholar

    JIA Cheng-zao, ZHAO Wen-zhi, WEI Guo-qi, et al. Salt structures and exploration of oil and gas [J]. Petroleum Exploration and Development, 2003, 30(2): 17~19.

    Google Scholar

    [10] 邬光辉, 蔡振中, 赵宽志, 等.塔里木盆地库车坳陷盐构造成因机制探讨[J].新疆地质, 2006, 24(2):182~186.

    Google Scholar

    WU Guang-hui, CAI Zhen-zhong, ZHAO Kuan-zhi, et al. The mechanics of salt tectonics in Kuche depression, Tarim Basin [J]. Xinjiang Geology, 2006, 24(2): 182~186.

    Google Scholar

    [11] 刘晓峰, 解习农, 张成, 等.东营凹陷盐-泥构造的样式和成因机制分析[J].地学前缘, 2006, 12(4):403~409.

    Google Scholar

    LIU Xiao-feng, XIE Xi-nong, ZHANG Cheng, et al. Study on structural styles and genetic mechanism of salt-mud tectonics in Dongying depression[J]. Earth Science Frontiers, 2005, 12(4): 403~409.

    Google Scholar

    [12] Neal J T, Magorian T R, Thoms R L, et al. Anomalous zones in Gulf Coast salt domes with special reference to Big Hill, TX, and Weeks Island, LA[R]. Albuquerque: Sandia National Labs, 1993.

    Google Scholar

    [13] Frumkin A. Uplift rate relative to base-levels of a salt diapir (Dead Sea basin, Israel) as indicated by cave levels [J]. Geological Society, London, Special Publications, 1996, 100(1): 41~47. doi: 10.1144/GSL.SP.1996.100.01.04

    CrossRef Google Scholar

    [14] Davison I, Bosence D, Alsop G I, et al. Deformation and sedimentation around active Miocene salt diapirs on the Tihama Plain, northwest Yemen [J]. Geological Society, London, Special Publications, 1996, 100(1): 23~39. doi: 10.1144/GSL.SP.1996.100.01.03

    CrossRef Google Scholar

    [15] 袁静, 覃克.东营凹陷沙四段深水成因蒸发岩特征及其与油气藏的关系[J].石油大学学报:自然科学版, 2001, 25(1):9~11, 15.

    Google Scholar

    YUAN Jing, QIN Ke. Characteristics of evaporate generated in deep water of Sha-4 Member in Dongying sag [J]. Journal of the University of Petroleum: Edition of Natural Science, 2001, 25(1): 9~11, 15.

    Google Scholar

    [16] 于建国, 李三忠, 王金铎, 等.东营凹陷盐底辟作用与中央隆起带断裂构造成因[J].地质科学, 2005, 40(1):55~68.

    Google Scholar

    YU Jian-guo, LI San-zhong, WANG Jin-duo, et al. Salt diapirism and faulting of the gentral uplift belt in the Dongying sag, Bohai Bay Basin, north China [J]. Chinese Journal of Geology, 2005, 40(1): 55~68.

    Google Scholar

    [17] 汤良杰, 贾承造, 皮学军, 等.库车前陆褶皱带盐相关构造样式[J].中国科学:D辑, 2003, 33(1):39~46.

    Google Scholar

    TANG Liang-jie, JIA Cheng-zao, PI Xue-jun, et al. Salt-related structural style in the Kuche foreland fold belt[J]. Science in China: Series D, 2003, 33(1): 39~46.

    Google Scholar

    [18] 叶兴树, 王伟锋, 陈世悦, 等.东营凹陷断裂活动特征及其对沉积的控制作用[J].西安石油大学学报:自然科学版, 2006, 21(5):29~33.

    Google Scholar

    YE Xing-shu, WANG Wei-feng, CHEN Shi-yue, et al. Characteristics of the fault activities in Dongying depression and their controlling effects on sediment[J]. Journal of Xi'an Shiyou University: Natural Science Edition, 2006, 21(5): 29~33.

    Google Scholar

    [19] 王艳忠. 东营凹陷北带古近系次生孔隙发育带成因机制及演化模式[D]. 青岛: 中国石油大学(华东), 2010.http://cdmd.cnki.com.cn/Article/CDMD-10425-2010280255.htm

    Google Scholar

    WANG Yan-zhong. Genetic mechanism and evolution model of secondary pore development zone of Paleogene in the north zone in Dongying Depression[D]. Qingdao: China Petroleum University, 2010.

    Google Scholar

    [20] 刘晖, 操应长, 姜在兴, 等.渤海湾盆地东营凹陷沙河街组四段膏盐层及地层压力分布特征[J].石油与天然气地质, 2009, (3):287~293. doi: 10.11743/ogg20090306

    CrossRef Google Scholar

    LIU Hui, CAO Ying-chang, JIANG Zai-xing, et al. Distribution characteristics of evaporates and formation pressure of the fourth Member of the Shahejie Formation in the Dongying sag, the Bohai Bay Basin [J]. Oil & Gas Geology, 2009, (3): 287~293. doi: 10.11743/ogg20090306

    CrossRef Google Scholar

    [21] 徐磊, 操应长, 王艳忠, 等.东营凹陷古近系膏盐岩成因模式及其与油气藏的关系[J].中国石油大学学报:自然科学版, 2008, 32(3):30~35.

    Google Scholar

    XU Lei, CAO Ying-chang, WANG Yan-zhong, et al. Genetic model of salt-gypsum rock of Paleogene in Dongying depression and its relationship with hydrocarbon reservoir[J]. Journal of China University of Petroleum, 2008, 32(3): 30~35.

    Google Scholar

    [22] 费琪, 王燮培.初论中国东部含油气盆地的底辟构造[J].石油与天然气地质, 1982, 3(2):113~123. doi: 10.11743/ogg19820202

    CrossRef Google Scholar

    Fei QI, WANG Xie-pei. A preliminary study on diapiric structure in oil and gas-bearing basins in eastern China [J]. Oil & Gas Geology, 1982, 3(2): 113~123. doi: 10.11743/ogg19820202

    CrossRef Google Scholar

    [23] Rayleigh L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[C]//Proceedings of the London Mathematical Society, 1983: 170~177.

    Google Scholar

    [24] Urai J L, Spiers C J, Zwart H J, et al. Weakening of rock salt by water during long-term creep [J]. Nature, 1986, 324(6097): 554~557. doi: 10.1038/324554a0

    CrossRef Google Scholar

    [25] Waltham D. Why does salt start to move? [J]. Tectonophysics, 1997, 282(1): 117~128.

    Google Scholar

    [26] 陈勇, 周振柱, 高永进, 等.济阳坳陷东营凹陷盐岩中的烃类包裹体及其地质意义[J].地质论评, 2014, 60(2):464~472.

    Google Scholar

    CHEN Yong, ZHOU Zhen-zhu, GAO Yong-jin, et al. Hydrocarbon inclusions in salt rock of Dongying sag, Jiyang depression, and their geological implications [J]. Geologecal Review, 2014, 60(2): 464~472.

    Google Scholar

    [27] Schléder Z, Urai J L, Nollet S, et al. Solution-precipitation creep and fluid flow in halite: A case study of Zechstein (Z1) rocksalt from Neuhof salt mine (Germany) [J]. International Journal of Earth Sciences, 2008, 97(5): 1045~1056. doi: 10.1007/s00531-007-0275-y

    CrossRef Google Scholar

    [28] Schoenherr J, Urai J L, Kukla P A, et al. Limits to the sealing capacity of rock salt: A case study of the infra-Cambrian Ara Salt from the South Oman salt basin [J]. AAPG Bulletin, 2007, 91(11): 1541~1557. doi: 10.1306/06200706122

    CrossRef Google Scholar

    [29] Davison I. Faulting and fluid flow through salt [J]. Journal of the Geological Society, 2009, 166(2): 205~216. doi: 10.1144/0016-76492008-064

    CrossRef Google Scholar

    [30] Jowett E C, Cathles Ⅲ L M, Davis B W. Predicting depths of gypsum dehydration in evaporitic sedimentary basins [J]. AAPG Bulletin, 1993, 77(3): 402~413.

    Google Scholar

    [31] Connolly J A D, Holness M B, Rubie D C, et al. Reaction-induced microcracking: An experimental investigation of a mechanism for enhancing anatectic melt extraction [J]. Geology, 1997, 25(7): 591~594. doi: 10.1130/0091-7613(1997)025<0591:RIMAEI>2.3.CO;2

    CrossRef Google Scholar

    [32] Fertl B, Sahay W H. Origin and evaluation of formation pressures [M]. Allied Publishers, 1988.

    Google Scholar

    [33] Demercian S, Szatmari P, Cobbold P R. Style and pattern of salt diapirs due to thin-skinned gravitational gliding, Campos and Santos basins, offshore Brazil [J]. Tectonophysics, 1993, 228(3): 393~433.

    Google Scholar

    [34] Vendeville B C. A new interpretation of Trusheim's classic model of salt-diapir growth [J]. Trans-Gulf Cost Assoc Geol Soc, 2002, 52: 943~952.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(455) PDF downloads(5) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint