2016 Vol. 22, No. 4
Article Contents

MENG Peng-yan, SUN Jie, YU Chang-chun, MU Chao, SHUAI Shuang, XIE Fei, MENG Dan. LITHOLOGICAL INFORMATION EXTRACTION IN MOUNTAIN CANYON REGION BASED ON MULTI-SOURCE REMOTE SENSING DATA: A CASE STUDY OF 1: 50000 PILOT GEOLOGICAL MAPPING IN BEISHAN AREA IN WUSHI, XINJIGAN[J]. Journal of Geomechanics, 2016, 22(4): 907-920.
Citation: MENG Peng-yan, SUN Jie, YU Chang-chun, MU Chao, SHUAI Shuang, XIE Fei, MENG Dan. LITHOLOGICAL INFORMATION EXTRACTION IN MOUNTAIN CANYON REGION BASED ON MULTI-SOURCE REMOTE SENSING DATA: A CASE STUDY OF 1: 50000 PILOT GEOLOGICAL MAPPING IN BEISHAN AREA IN WUSHI, XINJIGAN[J]. Journal of Geomechanics, 2016, 22(4): 907-920.

LITHOLOGICAL INFORMATION EXTRACTION IN MOUNTAIN CANYON REGION BASED ON MULTI-SOURCE REMOTE SENSING DATA: A CASE STUDY OF 1: 50000 PILOT GEOLOGICAL MAPPING IN BEISHAN AREA IN WUSHI, XINJIGAN

More Information
  • The location of 1:50000 pilot geological mapping program in Beishan, Wushi County, lies at the junction point of north-west margin of Tarim basin and south-west of Tianshan. According to the geomorphic characteristics of high altitude and deep negative relief, the study area belongs to alpine valley region. Based on the typical lithology spectral absorption characteristics, we carried out some research on the enhancement and absorption of lithologic differences information, and summarized a series of methods to divide the lithological units margins according to multi-source remote sensing data. On the foundation of ASTER, ASTER and SPOT6 cooperative data, ASTER and GF-2 cooperative data, we choose the best wave combination to synthesize RGB color and enhance the difference between images. And we preliminarily mark the boundaries of different image units according to the known geological data of study area. Then, the final lithology units can be interpreted by combining field survey data, realistic geological background, and geomorphic images. Thus, the study results provide reference for further optimized stratum division and comparison.

  • 加载中
  • [1] 王润生, 熊盛青, 聂洪峰, 等.遥感地质勘查技术与应用研究[J].地质学报, 2011, 85(11):1699~1743.

    Google Scholar

    WANG Run-sheng, XIONG Sheng-qing, NIE Hong-feng, et al. Remote sensing technology and its application in geological exploration[J]. Acta Geologica Sinica, 2011, 85(11):1699~1743.

    Google Scholar

    [2] Hunt G R, Salisbury J W. Visible and near infrared spectra of minerals and rocks Ⅰ:Silieate minerals[J]. Modern Geology, 1970, 1:238~300.

    Google Scholar

    [3] Hunt G R, Salisbury J W. Visible and Near Infrared Spectra of Minerals and Rocks Ⅱ:Carbonates[J]. Modern Geology, 1971, 2:23~30.

    Google Scholar

    [4] 燕守勋, 武晓波, 周朝宪, 等.遥感和光谱地质进展及其对矿产勘查的实践应用[J].地球科学进展, 2011, 26(1):13~29.

    Google Scholar

    YAN Shou-xun, WU Xiao-bo, ZHOU Chao-xian, et al. Remote sensing and spectral geology and their applications to mineral exploration[J]. Advances in Earth Science, 2011, 26(1):13~29.

    Google Scholar

    [5] 甘甫平, 王润生, 马蔼乃, 等.光谱遥感岩矿识别基础与技术研究进展[J].遥感技术与应用, 2002, 17(3):140~147. doi: 10.11873/j.issn.1004-0323.2002.3.140

    CrossRef Google Scholar

    GAN Fu-ping, WANG Run-sheng, MA Ai-nai, et al. The development and tendency of both basis and techniques of discrimination for minerals and rocks using spectral remote sensing data[J]. Remote Sensing Technology and Application, 2002, 17(3):140~147. doi: 10.11873/j.issn.1004-0323.2002.3.140

    CrossRef Google Scholar

    [6] 王晋年, 李志忠, 张立福, 等. "光谱地壳"计划——探索新一代矿产勘查技术[J].地球信息科学学报, 2012, 14(3):344~351.

    Google Scholar

    WANG Jin-nian, LI Zhi-zhong, ZHANG Li-fu, et al. "Spectral Crust" project:Research on new mineral exploration technology[J]. Journal of Geo-Information Science, 2012, 14(3):344~351.

    Google Scholar

    [7] 刘超群, 马祖陆, 莫源富.遥感岩性识别研究进展与展望[J].广西科学院学报, 2007, 23(2):120~124.

    Google Scholar

    LIU Chao-qun, MA Zu-lu, MO Yuan-fu. Progress and prospect of study on remote sensing lithologic identification[J]. Journal of Guangxi Academy of Sciences, 2007, 23(2):120~124.

    Google Scholar

    [8] Loughlin W. Principal component analysis for alteration mapping[J]. Photogrammetric Engineering & Remote Sensing, 1991, 57(9):1163~1169.

    Google Scholar

    [9] 丑晓伟, 傅碧宏.干旱区TM图像岩石地层信息提取与分析方法研究[J].沉积学报, 1995, (s1):164~170.

    Google Scholar

    CHOU Xiao-wei, FU Bi-hong. Extraction and analysis of lithostratigraphic information from Landsat Thematic Mapper Imagery in arid region[J]. Acta Sedimentologica Sinica, 1995, (s1):164~170.

    Google Scholar

    [10] Rowan L C, Mars J C, Simpson C J. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)[J]. Remote Sensing of Environment, 2005, 99(1/2):105~126.

    Google Scholar

    [11] 时丕龙, 付碧宏, 二宫芳树.基于ASTER VNIR-SWIR多光谱遥感数据识别与提取干旱地区岩性信息——以西南天山柯坪隆起东部为例[J].地质科学, 2010, 45(1):333~347.

    Google Scholar

    SHI Pi-long, FU Bi-hong, Ninomiya Y. Detecting lithologic features from ASTER VNIR-SWIR multispectral data in the arid region:A case study in the eastern Kalpin uplift, southwest Tianshan[J]. Chinses Journal of Geology, 2010, 45(1):333~347.

    Google Scholar

    [12] 刘本培.西南天山构造格局与演化[M].武汉:中国地质大学出版社, 1996.

    Google Scholar

    LIU Ben-pei. Tectonic pattern and evolution of southwest Tianshan[M]. Wuhan:China University of Geosciences Press, 1996.

    Google Scholar

    [13] 梁群峰, 杨克俭, 杨运军, 等.西南天山梅尔盖西地区成矿地质条件及成矿预测[J].西北地质, 2013, 46(1):91~102.

    Google Scholar

    LIANG Qun-feng, YANG Ke-jian, YANG Yun-jun, et al. Metallogenic prognosis in the Meiergaixi region, southwest Tianshan orogeny[J]. Northwestern Geology, 2013, 46(1):91~102.

    Google Scholar

    [14] 赵仁夫, 杨建国, 王满仓, 等.西南天山地区矿产资源潜力综合评价报告[R].西安:西安地质矿产研究所, 2003.

    Google Scholar

    ZHAO Ren-fu, YANG Jian-guo, WANG Man-cang, et al. Comprehensive evaluation report on mineral resources potential in southwest Tianshan region[R]. Xi'an:Xi'an Institute of Geology and Mineral Resources, 2003.

    Google Scholar

    [15] Itami H, Roehl T W. Mobilizing Invisible Assets[M]. Harvard University Press, 1991.

    Google Scholar

    [16] 马艳华.高空间分辨率和高光谱分辨率遥感图像的融合[J].红外, 2003, (10):11~16. doi: 10.3969/j.issn.1672-8785.2003.10.003

    CrossRef Google Scholar

    MA Yan-hua. Fusion of high spatial resolution and high spectral resolution remote sensing image[J]. Infrared, 2003, (10):11~16. doi: 10.3969/j.issn.1672-8785.2003.10.003

    CrossRef Google Scholar

    [17] Hunt G R. Spectral signatures of particulate minerals in the visible and near infrared[J]. Geophysics, 1977, 42(3):501. doi: 10.1190/1.1440721

    CrossRef Google Scholar

    [18] Amer R, Kusky T, Ghulam A. Lithological mapping in the central eastern desert of Egypt using ASTER data[J]. Journal of African Earth Sciences, 2010, 56(2):75~82.

    Google Scholar

    [19] 杨可明, 刘士文, 王林伟, 等.光谱最小信息熵的高光谱影像端元提取算法[J].光谱学与光谱分析, 2014, 34(8):2229~2233.

    Google Scholar

    YANG Ke-ming, LIU Shi-wen, WANG Lin-wei, et al. An algorithm of Spectral Minimum Shannon Entropy on extracting endmember of hyperspectral image[J]. Spectroscopy and Spectral Analysis, 2014, 34(8):2229~2233.

    Google Scholar

    [20] 褚海峰, 翟中敏, 赵银娣, 等.一种多/高光谱遥感图像端元提取的凸锥分析算法[J].遥感学报, 2007, 11(4):460~467. doi: 10.11834/jrs.20070464

    CrossRef Google Scholar

    CHU Hai-feng, ZHAI Zhong-min, ZHAO Yin-di, et al. A Convex Cone Analysis Method for end member selection of multispectral and hyperspectral images[J]. Journal of Remote Sensing, 2007, 11(4):460~467. doi: 10.11834/jrs.20070464

    CrossRef Google Scholar

    [21] 高晓惠, 相里斌, 魏儒义, 等.基于光谱分类的端元提取算法研究[J].光谱学与光谱分析, 2011, 31(7):1995~1998.

    Google Scholar

    GAO Xiao-hui, XIANG Li-bin, WEI Ru-yi, et al. Research on endmember extraction algorithm based on spectral classification[J]. Spectroscopy and Spectral Analysis, 2011, 31(7):1995~1998.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(2)

Article Metrics

Article views(1183) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint