2017 Vol. 23, No. 1
Article Contents

WU Rui-an, ZHANG Yong-shuang, WANG Xian-li, YAO Xin, YANG Zhi-hua, DU Guo-liang. IN-SITU DIRECT SHEARING TEST ON LANDSLIDE ACCUMULATION BODY INTENSITY OF WENCHUAN EARTHQUAKE REGION[J]. Journal of Geomechanics, 2017, 23(1): 105-114.
Citation: WU Rui-an, ZHANG Yong-shuang, WANG Xian-li, YAO Xin, YANG Zhi-hua, DU Guo-liang. IN-SITU DIRECT SHEARING TEST ON LANDSLIDE ACCUMULATION BODY INTENSITY OF WENCHUAN EARTHQUAKE REGION[J]. Journal of Geomechanics, 2017, 23(1): 105-114.

IN-SITU DIRECT SHEARING TEST ON LANDSLIDE ACCUMULATION BODY INTENSITY OF WENCHUAN EARTHQUAKE REGION

More Information
  • In this paper, the earthquake-induced loose sediments near Xuankou, Wenchuan County, Sichuan province are selected to conduct the in-situ direct shear tests of undisturbed gravel soil and remolded soil sample direct shear tests with different situations to explore the shear properties of gravel soils under different vertical pressure, particle size composition and moisture. The study results show that (1) Gravel soils which have similar geological genesis, similar rock mass structure, different size composition and poor gradation have similar shear properties and shear strength. (2) The shear strength of undisturbed gravel soil samples is significantly higher than remolded samples with the same dry density and moisture. (3) Strain hardening strength of well-graded gravel soils is slightly higher than bad-graded gravel soil, when the content of coarse particle whose size is greater than 5 mm is more than 42.9%, friction angle increases with increment of coarse-grained contents, while cohesion decreases firstly and then increases. (4) When moisture content is more than 15.8%, there is a negative correlation between shear strength indexes and moisture content, with gradual increase of moisture, the shear strength of gravel soil will gradually reduce, among which the decrease of cohesion is more remarkable than internal friction angle. Considering others' research and experimental results, we suggest that the gravel soils having similar structure components in Wenchuan earthquake area can select the shear strength indexes c of 15±3kPa and Phi of 30°±2°.

  • 加载中
  • [1] 殷跃平.汶川八级地震滑坡高速远程特征分析[J].工程地质学报, 2009, 17 (2): 153~166.

    Google Scholar

    YIN Yue-ping. Rapid and long run-out features of landslides triggered by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2009, 17 (2): 153~166.

    Google Scholar

    [2] 黄润秋.汶川地震地质灾害后效应分析[J].工程地质学报, 2011, 19 (2): 145~151.

    Google Scholar

    HUANG Run-qiu. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2011, 19(2): 145~151.

    Google Scholar

    [3] Zhang Y S, Guo C B, Lan H X, et al. Reactivation mechanism of ancient giant landslides in the tectonically active zone: a case study in Southwest China[J]. Environmental Earth Science, 2015, 74: 1719~1729. doi: 10.1007/s12665-015~4180~6

    CrossRef Google Scholar

    [4] 徐文杰, 胡瑞林, 谭儒蛟, 等.虎跳峡龙蟠右岸土石混合体野外试验研究[J].岩石力学与工程学报, 2006, 25(6): 1270~1277.

    Google Scholar

    XU Wen-jie, HU Rui-lin, TAN Ru-jiao, et al. Study on field test of rock-soil aggregate on right bank of Longpan in Tiger-leaping Gorge area[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1270~1277.

    Google Scholar

    [5] Li X, Liao Q L, He J M. In-situ tests and stochastic structural model of rock and soil aggregate in the Three Gorges Reservoir area[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3): 1~5.

    Google Scholar

    [6] Vallejo L E, Mawbyr, et al. Porosity influence on the shear strength of granular material-clay mixtures[J]. Engineering Geology, 2000, 58: 125~136. doi: 10.1016/S0013~7952(00)00051-X

    CrossRef Google Scholar

    [7] 张永双, 曲永新, 王献礼, 等.中国西南山区第四纪冰川堆积物的工程地质分类探讨[J].工程地质学报, 2009, 17(5): 581~589.

    Google Scholar

    ZHANG Yong-shuang, QU Yong-xin, WANG Xian-li, et al. On the engineering geological classification of quaternary glacial deposits in southwestern mountain area of China[J]. Journal of Engineering Geology, 2009, 17(5): 581~589.

    Google Scholar

    [8] 胡瑞林, 刘衡秋, 谭儒蛟, 等.内外动力地质作用与斜坡稳定性—以虎跳峡地区为例[M].北京:地质出版社, 2011.

    Google Scholar

    HU Rui-lin, LIU Heng-qiu, TAN Ru-jiao, et al. Coupling effect of endogenic and exogenic geological processes and slope stability-Case study from Tiger-leaping Gorge area[M]. Beijing: Geological Publishing House, 2011.

    Google Scholar

    [9] 周敢.土石混合填料现场直剪试验研究[J].中外公路, 2011, 31(5): 235~239.

    Google Scholar

    ZHOU Gan. On-site direct shear test of rock and soil mixture[J]. Domestic and Foreign Road, 2011, 31(5): 235~239.

    Google Scholar

    [10] 郭喜峰, 晏鄂川, 刘洋.三峡库区碎石土滑坡体抗剪强度研究[J].重庆交通大学学报:自然科学版, 2015, 34(1): 38~71.

    Google Scholar

    GUO Xi-feng, YAN E-chuan, LIU Yang. Shear Strength of Gravel Soil Landslide in the Three Gorges Reservoir Zone[J]. Journal of Chongqing Jiaotong University: Natural Science, 2015, 34(1): 38~71.

    Google Scholar

    [11] Karma K, Ikuo T, Roland P O, et al. Undrained torsional shear tests on gravelly soils[J]. Landslides, 2004, 1:185~194. doi: 10.1007/s10346-004-0023~3

    CrossRef Google Scholar

    [12] Wen B P, Aydin A, Duzgoren-Aydin N S. Residual strength of slip zones of large landslides in the Three Gorges area, China[J]. Engineering Geology, 2007, 93: 82~98. doi: 10.1016/j.enggeo.2007.05.006

    CrossRef Google Scholar

    [13] 周永昆. 滑带土的力学行为特性试验研究[D]. 重庆: 重庆大学. 2010.

    Google Scholar

    ZHOU Yong-kun. Study of mechanics behavior and properties of landslide soil via laboratory test[D]. Chongqing: Chongqing University, 2010.

    Google Scholar

    [14] Taheri A, Saski Y, Tatsuoka F, et al. Strength and deformation characteristics of cement-mixed gravelly soil in multiple-step triaxial compression[J]. Soils and Foundations, 2012, 52(1): 126~145. doi: 10.1016/j.sandf.2012.01.015

    CrossRef Google Scholar

    [15] 彭东黎, 李志勇.堆积体边坡碎石土抗剪强度试验研究[J].公路工程, 2014, 39(2): 254~257.

    Google Scholar

    PENG Dong-li, LI Zhi-yong. Experimental study on shear strength of rock-soil aggregates in accumulation slope[J]. Highway Engineering, 2014, 39(2): 254~257.

    Google Scholar

    [16] 徐文杰, 胡瑞林.基于数字图像分析及大型直剪试验的土石混合体块石含量与抗剪强度关系研究[J].岩石力学与工程学报, 2008, 27(5): 996~1007.

    Google Scholar

    XU Wen-jie, HU Rui-lin. Research on relationship between rock block proportion and shear strength of soil-rock mixtures based on digital image analysis and large direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 996~1007.

    Google Scholar

    [17] 许建聪, 尚岳全.降雨作用下碎石土滑坡解体变形破坏机制研究[J].岩土力学, 2008, 29(1): 106~118.

    Google Scholar

    XU Jian-cong, SHANG Yue-quan. Study on mechanism of disintegration deformation and failure of debris landslide under rainfall[J]. Rock and Soil Mechanics, 2008, 29(1): 106~118.

    Google Scholar

    [18] 宋丙辉, 谌文武, 吴玮江, 等.锁儿头滑坡滑带土不同含水率大剪试验研究[J].岩土力学, 2012, 33(S2): 77~84.

    Google Scholar

    SONG Bing-hui, CHEN Wen-wu, WU Wei-jiang, et al. Experimental study of large scale direct shear test of sliding zone soil of Suoertou landslide with different moisture contents[J]. Rock and Soil Mechanics, 2012, 33(S2): 77~84.

    Google Scholar

    [19] 安维忠, 李永祥, 刘生奎.输电线路戈壁碎石土地基现场直剪试验[J].电力建设, 2010, 31(5): 66~69.

    Google Scholar

    AN Wei-zhong, LI Yong-xiang, LIU Sheng-kui. Field direct shearing tests of Gobi gravel soil in Northwest for 750 kV transmission line engineering[J]. Electric Power Construction, 2010, 31(5): 66~69.

    Google Scholar

    [20] 李晓, 廖秋林, 赫建明, 等.土石混合体力学特性的原位试验研究[J].岩石力学与工程学报, 2007, 26(12): 2377~2384. doi: 10.3321/j.issn:1000~6915.2007.12.001

    CrossRef Google Scholar

    LI Xiao, LIAO Qiu-lin, HE Jian-ming, et al. Study on in-situ tests of mechanical characteristics on soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2377~2384. doi: 10.3321/j.issn:1000~6915.2007.12.001

    CrossRef Google Scholar

    [21] 郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社, 1999.

    Google Scholar

    GUO Qing-guo. The engineering properties and application of coarse grained soil[M]. Zhengzhou: The yellow river conservancy press, 1999.

    Google Scholar

    [22] 徐文杰, 张海洋.土石混合体研究现状及发展趋势[J].水利水电科技进展, 2013, 33(1): 80~88. doi: 10.3880/j.issn.1006~7647.2013.01.019

    CrossRef Google Scholar

    XU Wen-jie, ZHANG Hai-yang. Research status and development trend of soil-rock mixture[J]. Advances in Science and Technology of Water Resources, 2013, 33(1): 80~88. doi: 10.3880/j.issn.1006~7647.2013.01.019

    CrossRef Google Scholar

    [23] 董辉, 陈玺文, 傅鹤林等.堆积碎石土剪切特性的三轴试验[J].长安大学学报(自然科学版), 2015, 35(2): 59~66.

    Google Scholar

    DONG Hui, CHEN Xi-wen, FU He-lin, et al. Triaxlal test of shear properties of eluvial gravel[J]. Journal of Chang'an University(Natural Science Edition), 2015, 35(2): 59~66.

    Google Scholar

    [24] 魏厚振, 汪稔, 胡明鉴, 等.蒋家沟砾石土不同粗粒含量直剪强度特征[J].岩土力学, 2008, 29(1): 48~52.

    Google Scholar

    WEI Hou-zhen, WANG Ren, HU Ming-jian, et al. Strength behavior of gravelly soil with different coarse-grained contents in Jiangjiagou Ravine[J]. Rock and Soil Mechanics, 2008, 29(1): 48~52.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(1586) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint