2017 Vol. 36, No. 12
Article Contents

WALTER Ccallo, DANTE Soberon, LIU Jun'an, MIRIAN Mamani, RILDO Rodriguez, GUO Weimin, DANIEL Torres, ALAN Santos. New metallogenic approaches to the Coastal Batholith, Arequipa segment between 15° and 16°30' South latitude, Peru[J]. Geological Bulletin of China, 2017, 36(12): 2275-2286.
Citation: WALTER Ccallo, DANTE Soberon, LIU Jun'an, MIRIAN Mamani, RILDO Rodriguez, GUO Weimin, DANIEL Torres, ALAN Santos. New metallogenic approaches to the Coastal Batholith, Arequipa segment between 15° and 16°30' South latitude, Peru[J]. Geological Bulletin of China, 2017, 36(12): 2275-2286.

New metallogenic approaches to the Coastal Batholith, Arequipa segment between 15° and 16°30' South latitude, Peru

More Information
  • Corresponding author: 刘君安(1984-), 男, 硕士, 工程师, 从事拉美地区地质调查、地球化学勘查及成矿规律研究。E-mail:junan2003@qq.com 
  • The mapping of intrusive rocks from the Arequipa segment of the Coastal Batholith was complemented by detailed petrographic studies and U-Pb zircon ages. The results were analyzed and grouped into seven stages and four cycles. Each stage shows unique magmatic volumes, and the landform finds expression in batholiths and stocks. Cycles Ⅰ and Ⅱ represent the stages of Jurassic magmatism (201~145Ma), the magmatic differentiation grades from gabbros to granites. Cycles Ⅲ and Ⅳ represent the stages of Cretaceous magmatism, the magmatic differentiation varies from tonalites to monzogranites, diorites to granodiorites and from tonalites to granodiorites. In relation to the amphibole and biotite crystal population, the intrusives of the Cycle Ⅰ have abundant pyroxene and amphibole crystals, associated with Au-Fe mineralization; those of Cycle Ⅱ have abundant clustered amphibole crystals and in some cases are aligned or grouped biotite crystals and eventually hexagonal, associated with Cu-Au-Fe mineralization; those of Cycle Ⅲ have well developed isolated amphibole and biotites, and the intrusive rocks are associated with Au-Cu and Fe; those of Cycle Ⅳ have some amphibole and hexagonal biotite in separated form, and the intrusive rocks are more felsic and are associated with Cu-ZnAu-Ag-Fe and Cu-Au-Mo mineralization.

  • 加载中
  • [1] Pitcher W S, Atherton M, Cobbing E, et al.Magmatism at a plate edge.The Peruvian Andes[M].Glasgow:Blackie & Son, 1985:1-328.

    Google Scholar

    [2] Cobbing E J, Pitcher W S, Taylor W P.Segments and super-units in the coastal batholith of Peru[J].Journal of Geology, 1977, 85:625-631. doi: 10.1086/628342

    CrossRef Google Scholar

    [3] Weibel M, Frangipane-Gysel M, Hunziker J C.EinBeitragzurVulkanologieSüd-Perus[J].GeologischeRundschau, 1978, 67:243-252.

    Google Scholar

    [4] Sánchez A.Edades Rb-Sr en los segmentos Arequipa-Toquepala del batolito de la costa del Perú.Congreso Latinoamericano de Geología, 5.Actas.Buenos Aires[J].Servicio Geológico Nacional, 1982, 3:487-504.

    Google Scholar

    [5] Cordani U G, Kawashita K, Siegl G G, et al.Geochronological results from the southeastern part of the Arequipa massif[J] Comunicaciones (Universidad de Chile), 1985, 35:45-51.

    Google Scholar

    [6] Beckinsale R D, Sánchez A, Brook M, et al. Rb-Srwholerockisochron and K-Ar age determinations for the Coastal Batholith of Peru[C]//Pitcher W S, Atherton M P, Cobbing E J, et al. Magmatism at a plate edge: the Peruvian Andes[M]. Blackie, Glasgow, 1985: 177-202.

    Google Scholar

    [7] Mukasa S B.Zircon U-Pb ages of super-units in the Coastal batholith, Peru:Implications for magmatic and tectonic processes[J].Geological Society of America Bulletin, 1986, 97(2):241-254. doi: 10.1130/0016-7606(1986)97<241:ZUAOSI>2.0.CO;2

    CrossRef Google Scholar

    [8] Boeckhout F. Geochronological constraints on the Paleozoic to early Mesozoic geodynamic evolution of southern coastal Peru[D]. Ph. D. thesis, París, University Genève, 2012

    Google Scholar

    [9] Demouy S, Paquette J, Louis J, et al.Spatial and temporal evolution of Liassic to Paleocene arc activity in southern Peru unraveled by zircon U-Pb and Hf in-situ data on plutonic rocks[J].Lithos, 2012, 155:183-200. doi: 10.1016/j.lithos.2012.09.001

    CrossRef Google Scholar

    [10] Santos A, Weimin G, Tassinari C, et al. Geocronología U-Pb sobre zircones en la contrastación de la evolución espacial-temporal del magmatismo y la metalogenia del Batolito de la costa "Segmento Arequipa"[C]//Congreso Peruano de Geología XVⅢ, 2016.

    Google Scholar

    [11] Santos A, Cerpa L, Tassinari C, et al. Geocronología de las Rocas Intrusivas Relacionadas a la Mineralización del Pórfido Cuprífero de Zafranal(In edition).

    Google Scholar

    [12] Schildgen T, Ehlers T, Whipp D, et al.Quantifying canyon incision and Andean Plateau surface uplift, southwest Peru; a thermochronometer and numerical modeling approach[J].Journal of Geophysical Research, 2009, 114:1-22.

    Google Scholar

    [13] Robb L.Introduction to ore-forming processes[M].Oxford:Blackwell Science, 2005:1-373.

    Google Scholar

    [14] Barton M D.Granitic magmatism and metallogeny of southwestern North America.Transactions of the Royal Society Edinburgh:Earth Sciences, 1996, 87:261-280. doi: 10.1017/S0263593300006672

    CrossRef Google Scholar

    [15] Loewy S L, Connelly J N, Dalziel I W D.An orphaned block:the Arequipa-Antofalla basement of the Central Andean margin of South America[J].Geological Society of America Bulletin, 2004, 116:171-187. doi: 10.1130/B25226.1

    CrossRef Google Scholar

    [16] Shackleton R, Ries A, Coward M, et al.Structure, Metamorphism and geochronology of the Arequipa Massif of coastal Perú[J].Journal of the Geological Society, 1979, 136:195-214. doi: 10.1144/gsjgs.136.2.0195

    CrossRef Google Scholar

    [17] Wasteneys H, Clark A, Farrar E, et al.Grenvillian granulite-facies metamorphism in the Arequipa Massif, Peru:a Laurentia-Gondwana link[J].Earth and Planetary Science Letters, 1995, 132:63-73. doi: 10.1016/0012-821X(95)00055-H

    CrossRef Google Scholar

    [18] Chew D M, Schaltegger U, Kosler J, et al.U-Pb geochronologic evidence for the evolution of the Gondwanan margin of the northcentral Andes[J].Geological Society of America Bulletin, 2007, 119:697-711. doi: 10.1130/B26080.1

    CrossRef Google Scholar

    [19] Caldas J. Evidencia de una glaciación Precambriana en la costa sur del Perú[C]//Congreso Geológico Chileno. Arica: Instituto de Investigaciones Geológicas, 1979, 4: 29-38.

    Google Scholar

    [20] Torres D, Santos A, Ccallo W, et al.Geología de los cuadrángulos de Atico y Chaparra Hojas 33o y 32o[J].INGEMMET, Boletín serie A:carta geológica nacional(in press).

    Google Scholar

    [21] Romeuf N, Aguirre L, Carlier G, et al.Present knowledge of the Jurassic volcanogenic formations of the Southern Coastal Peru[M].Second ISAG, Oxford (UK).1993:437-440.

    Google Scholar

    [22] Romeuf N, Aguirre L, Soler P, et al.Middle Jurassic volcanism in the northern and central Andes[J].Revista Geológica de Chile, 1995, 22(2):245-259.

    Google Scholar

    [23] Caldas J.Geología de los cuadrángulos de San Juan, Acarí y Yauca[J].INGEMMET.Boletín, Serie A:Carta Geológica Nacional, 1978, 30:78-86.

    Google Scholar

    [24] Carlotto V, Quispe J, Acosta H, et al.DOMINIOS GEOTECTÓNICOS Y METALOGÉNESIS DEL PERÚ[J].Boletín Sociedad Geológica del Perú, 2009, 103:1-89.

    Google Scholar

    [25] Mamani M, Rivera F.Sistema de fallas Iquipi-Clavelinas:zona de transición cortical e implicancias para el emplazamiento de depósitos minerals[J].Sociedad Geológica del Perú.Boletín, 2011, 105:37-50.

    Google Scholar

    [26] Vicente J C. Early late Cretaceous overthrusting in the Western Cordillera of southern Peru[C]//Ericksen G E, Cañas M T, Reinemund J A. Geology of the Andes and its relations to hydrocarbon and mineral resources. Circum-Pacifi c Council for Energy and Mineral Resources, Houston T X, Earth Science Series, 1989, 11: 91-117.

    Google Scholar

    [27] Jaillard E.La fase peruana (Cretácico superior) en la margen peruana[J].Bol.Soc.Geol.Perú, 1992, 83:81-87.

    Google Scholar

    [28] Jerram D, Martin V.Understanding crystal populations and their significance through the magma plumbing system[M].Geological Society Pub.House, 2008:133-148.

    Google Scholar

    [29] Stewart J W, Evernden J F, Snelling N J.Age determinations from Andean Peru:a reconnaissance survey[J].Geological Society of America Bulletin, 1974, 85(7):1107-1116. doi: 10.1130/0016-7606(1974)85<1107:ADFAPA>2.0.CO;2

    CrossRef Google Scholar

    [30] Li L, Xiong X L, Liu X C.Nb/Ta Fractionation by Amphibole in Hydrous Basaltic Systems:Implications for Arc Magma Evolution and Continental Crust Formation[J].Journal of Petrology, 2017:1-26.

    Google Scholar

    [31] Huamán J, Bustamante J, Galvez S. Mineralización supérgena del pórfido Cu-Au-Mo, Proyecto Ocaña, Arequipa-Perú[C]//Congreso Peruano de Geología. Lima: Sociedad Geológica del Perú, 2014: 4.

    Google Scholar

    [32] Vidal C, Injoque J, Sidder G, et al.Amphibolitic Cu-Fe skarn deposits in the central coast of Peru[J].Economic Geology, 1990, 85(7):1447-1461. doi: 10.2113/gsecongeo.85.7.1447

    CrossRef Google Scholar

    [33] Mamani M, Wörner G, Sempere T.Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S):Tracing crustal thickening and magma generation through time and space[J].Geological Society of America Bulletin, 2010, 122(1/2):162-182.

    Google Scholar

    [34] Mamani M, Rivera F.Sistema de fallas Iquipi-Clavelinas:zona de transición cortical e implicancias para el emplazamiento de depósitos minerales[J].Sociedad Geológica del Perú.Boletín, 2011, 105:37-50.

    Google Scholar

    [35] Mamani M, Rodríguez R, Acosta H, et al.Características litológicas y geoquímicas mas resaltantes de los arcos magmáticos del Perú desde el Ordovícico[M].Lima:Sociedad Geológica del Perú, 2012:5.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(1487) PDF downloads(47) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint