2017 Vol. 36, No. 9
Article Contents

LIU Hongguang, LIU Bo. Several genetic models of nodular chert hosted in Phanerozoic carbonate[J]. Geological Bulletin of China, 2017, 36(9): 1635-1644.
Citation: LIU Hongguang, LIU Bo. Several genetic models of nodular chert hosted in Phanerozoic carbonate[J]. Geological Bulletin of China, 2017, 36(9): 1635-1644.

Several genetic models of nodular chert hosted in Phanerozoic carbonate

  • Carbonate-hosted nodular chert is very common in Phanerozoic strata. Siliceous organisms are the main source of silica for the chert. The sedimentary environment of chert evolved from shallow water to deep water with the evolution of main siliceous organism spices during the geological history. Some typical characteristics exist among nodular cherts in different districts and different ages. The nodular chert usually exists in isolation and dispersion. The authors could observe from the thin section that the calcite grains are replaced selectively and the dolomite crystals are still euhedral. The siliceous minerals exhibit regular change from crypto-crystalline to microcrystalline and finally to macrocrystalline form. Based on the typical characteristics and specific phenomena of the research area, four main genetic models are proposed by different researchers, which are Organic Matter Oxidation Model, Semiper-meable Membrane Model, Mixing Zone Model and Force of Crystallization Controlled Replacement Model. However, due to the complexity of the genesis and various possibilities of formation stage during the sedimentary and diagenetic history, those models all have some limitations and can only explain the characteristics partially. Since the nodular chert can indicate the sedimentary environ-ment and diagenetic history well, the research on its origin is meaningful. Although these models have been proposed for decades, they still have reference value in the future because of the careful and profound thinking.

  • 加载中
  • [1] Hesse R. Silica diagenesis:origin of inorganic and replacement cherts[J]. Earth-Science Reviews, 1989, 26(1/3):253-284.

    Google Scholar

    [2] August Goldstein J R. Cherts and Novaculites of Ouachita Facies[J]. SEPM Special Publications, 1959:135-149.

    Google Scholar

    [3] Bissell H J. Silica in Sediments of the Upper Paleozoic of the Cordil-leran Area[J]. SEPM Special Publications, 1959:150-185.

    Google Scholar

    [4] Siever R. Silica Solubility, 0°~200℃ and the Diagenesis of Siliceous Sediments[J]. Journal of Geology, 1962, 70(2):127-150. doi: 10.1086/626804

    CrossRef Google Scholar

    [5] Siever R. The silica budget in the sedimentary cycle[J]. The Ameri-can Mineralogist, 1957, 42:821-841.

    Google Scholar

    [6] Hesse R. Origin of chert:Diagenesis of biogenic siliceous sediments[J]. Geoscience Canada, 1988, 15(3):171-192.

    Google Scholar

    [7] Tréguer P, Nelson D M, Van Bennekom A J, et al. The silica bal-ance in the world ocean:a reestimate[J]. Science, 1995, 268(5209):375-379. doi: 10.1126/science.268.5209.375

    CrossRef Google Scholar

    [8] Tréguer P J, De La Rocha C L. The world ocean silica cycle[J]. An-nual Review of Marine Science, 2013, 5(5):477-501.

    Google Scholar

    [9] Kastner M, Keene J B, Gieskes J M. Diagenesis of siliceous oozes-Ⅰ. Chemical controls on the rate of opal-A to opal-CT transforma-tion-an experimental study[J]. Geochimica Et CosmochimicaActa, 1977, 41(8):1041-1051, 1053-1059. doi: 10.1016/0016-7037(77)90099-0

    CrossRef Google Scholar

    [10] Williams L A, Parks G A, Crerar D A. Silica diagenesis; I, Solubility controls[J]. Journal of Sedimentary Research, 1985, 55(3):301-311.

    Google Scholar

    [11] Bohrmann G, Abelmann A, Gersonde R, et al. Pure siliceous ooze, a diagenetic environment for early chert formation[J]. Geology, 1994, 22(3):207-210. doi: 10.1130/0091-7613(1994)022<0207:PSOADE>2.3.CO;2

    CrossRef Google Scholar

    [12] Knauth L P. A model for the origin of chert in limestone[J]. Geolo-gy, 1979, 7(6):274-277. doi: 10.1130/0091-7613(1979)7<274:AMFTOO>2.0.CO;2

    CrossRef Google Scholar

    [13] Clayton C J. The chemical environment of flint formation in Up-per Cretaceous chalks[M]//The scientific study of flint and chert. Cambridge:Cambridge University Press, 1986, 1:43-53.

    Google Scholar

    [14] Maliva R G, Siever R. Nodular Chert Formation in Carbonate Rocks[J]. Journal of Geology, 1989, 97(4):421-433. doi: 10.1086/629320

    CrossRef Google Scholar

    [15] Knauth L P. Origin and diagenesis of cherts:An isotopic perspec-tive[M]. Isotopic Signatures and Sedimentary Records. Springer Berlin Heidelberg, 1992:123-152.

    Google Scholar

    [16] Knoll A, Harper H E J. Silica, Diatoms, and Cenozoic Radiolarian Evolution[J]. Geology, 1975:175-177.

    Google Scholar

    [17] Tobin K J. A survey of paleozoic microbial fossils in chert[J]. Sedi-mentary Geology, 2004, 168:97-107. doi: 10.1016/j.sedgeo.2004.03.006

    CrossRef Google Scholar

    [18] Maliva R G, Knoll A H, Siever R. Secular change in chert distribu-tion a reflection of evolving biological participation in the silica cy-cle[J]. Palaios, 1989:519-532.

    Google Scholar

    [19] Scholle P A, Ulmer-Scholle D S. A color guide to the petrography of carbonate rocks:grains, textures, porosity, diagenesis[M]. Aapg Memoir, 2005, 77(77):1-486.

    Google Scholar

    [20] Emery K O, Rittenberg S C. Early Diagenesis of California Basin Sediments in Relation to Origin of Oil[J]. APG Bulletin American Association of Petroleum Geologists, 1952, 36(5):735-806.

    Google Scholar

    [21] IlerR K, The colloid chemistry of silica and silicates[M].Ithaca, Cor-nell Univ. Press, 1955:1-324.

    Google Scholar

    [22] Harned H S, Owen B B. Thephysical chemistry of electrolytic solu-tions[J].Journal of The Electrochemical Society, 1959, 106(1):3805-3806.

    Google Scholar

    [23] Garrels R M. Mineral equilibria[J]. Soil Science, 1960, 90(2):146.

    Google Scholar

    [24] Greenberg S A, Price E W. The Solubility of Silica in Solutions of Electrolytes[J]. Journal of Physical Chemistry, 2002, 61(11):1539-1541.

    Google Scholar

    [25] De Sitter L U. Diagenesis of oil-field brines[J]. AAPG Bulletin, 1947, 31(11):2030-2040.

    Google Scholar

    [26] McKelvey J G, Milne I H. The flow of salt solutions through com-pacted clay[J]. Clays and clay minerals, 1962, 9:248-259.

    Google Scholar

    [27] Siever R, Garrels R M, Kanwisher J, et al. Interstitial Waters of Re-cent Marine Muds Off Cape Cod.[J]. Science, 1961, 134(3485):1071-1072. doi: 10.1126/science.134.3485.1071

    CrossRef Google Scholar

    [28] Badiozamani K. The doragdolomitization model-application to the Middle Ordovician of Wisconsin[J]. Jour. sediment. petrol., 1973, 43(4):965-984.

    Google Scholar

    [29] 迪安.兰氏化学手册[M].北京:科学出版社, 1991:117-123.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(1395) PDF downloads(6) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint