2017 Vol. 36, No. 9
Article Contents

ZHAO Zhen, LU Lu, WU Zhenhan, HU Daogong. Cenozoic uplift process in Gangdise, Tibet:Evidence from thermal history modeling of apa-tite fission track[J]. Geological Bulletin of China, 2017, 36(9): 1553-1561.
Citation: ZHAO Zhen, LU Lu, WU Zhenhan, HU Daogong. Cenozoic uplift process in Gangdise, Tibet:Evidence from thermal history modeling of apa-tite fission track[J]. Geological Bulletin of China, 2017, 36(9): 1553-1561.

Cenozoic uplift process in Gangdise, Tibet:Evidence from thermal history modeling of apa-tite fission track

More Information
  • The apatite fission track age obtained from the intermediate-acid intrusive rocks on the southern margin of the Gangdise is 37~25Ma. Thermal history modeling process shows that the Gangdise belt has experienced three stages of uplift evolution. The First stage (40~26Ma) was a rapid cooling uplifting stage, which was controlled by the India-Eurasia complete collision, and the Gangdise was raised to the elevation height in 37~26Ma. The second stage (26~8Ma) was an erosion stage, affected by the pedimentation and large thrust system activation, with the existence of alternate erosion and uplift process in this area. The third stage (8~0Ma) was a low cooling stage, during which activation of the NS-striking normal fault systems and rifts led to the formation of basin-mountain system and differential uplifting. In addition, there existed no obvious difference between the north and the south and between the west and the east of Gangdise, with all of these places having similar uplift processes and histories. Thermal history modeling process of apatite fission track age shows that the Gangdise belt has experienced a whole, uniform and phase uplifting.

  • 加载中
  • [1] Dewey J F, Shackleton R M, Chang C F, et al. The tectonic evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 1988, 327(1594):379-413. doi: 10.1098/rsta.1988.0135

    CrossRef Google Scholar

    [2] Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science, 1992, 263:1663-1670.

    Google Scholar

    [3] Yin A, Harrison T M, Ryerson F J, et al. Tertiary structural evolution of the Gangdese thrustsystem, southeastern Tibet[J]. Journal of Geophysical Research, 1994, 99(B9):18175-18201. doi: 10.1029/94JB00504

    CrossRef Google Scholar

    [4] Copeland P, Harrison T M, Kidd W S F, et al. Rapid early Miocene acceleration of uplift in the Gangdese Belt Xizang (southern Tibet), and its bearing on accommodation mechanisms of the India-Asia collision[J]. Earth and Planetary Science Letters, 1987, 86:240-252. doi: 10.1016/0012-821X(87)90224-X

    CrossRef Google Scholar

    [5] Spicer R A, Harris N B W, Widdowson M W, et al. Constant elevation of Southern Tibet over the past15 million years[J].Nature, 2003, 421:622-624. doi: 10.1038/nature01356

    CrossRef Google Scholar

    [6] Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to-Miocene Lunpola basin, central Tibet[J]. Nature, 2006, 439(9):677-681.

    Google Scholar

    [7] 崔之久, 高全洲, 刘耕年, 等.夷平面、古岩溶与青藏高原隆升[J].中国科学(D辑), 1996, 26(4):378-386.

    Google Scholar

    [8] 李吉均, 文世宣, 张青松, 等.青藏高原隆起的时代、幅度和形式的探讨[J].中国科学(A辑), 1979, 6:608-616.

    Google Scholar

    [9] 李廷栋.青藏高原隆升的过程和机制[J].地球学报, 1995, 1:1-9.

    Google Scholar

    [10] 钟大赉, 丁林.青藏高原的隆起过程及其机制探讨[J].中国科学(D辑), 1996, 26(4):289-295.

    Google Scholar

    [11] 刘顺生, 张峰.西藏南部地区的裂变径迹年龄和上升速度的研究[J].中国科学(B辑), 1987, 9:1000-1010.

    Google Scholar

    [12] 江万, 莫宣学, 赵崇贺, 等.矿物裂变径迹年龄与青藏高原隆升速率研究[J].地质力学学报, 1998, 4(1):13-18.

    Google Scholar

    [13] 袁万明, 王世成, 李胜荣, 等.西藏冈底斯带构造活动的裂变径迹证据[J].科学通报, 2001, 45(20):1739-1742. doi: 10.3321/j.issn:0023-074X.2001.20.017

    CrossRef Google Scholar

    [14] Gleadow A J W, Duddy I R. A natural long-term track annealing experiment for apatite[J]. Nuclear Tracks, 1981, 5:169-174. doi: 10.1016/0191-278X(81)90039-1

    CrossRef Google Scholar

    [15] Nacser C W. The fading of fission tracks in the geologic environment-data from deep drill holes[J]. Nuclear Tracks, 1981, 5:248-250. doi: 10.1016/0191-278X(81)90055-X

    CrossRef Google Scholar

    [16] Copeland P, Harrison M, Yun P, et al. Thermal evolution of the Gangdese batholith, southern Tibet:A history of episodic unroofing[J]. Tectonics, 1995, 14(2):223-236. doi: 10.1029/94TC01676

    CrossRef Google Scholar

    [17] 陈文寄, 李齐, 郝杰, 等.冈底斯岩带热演化史的MDD模式新证据Ⅱ[J].科学通报, 1998, 43(21):2332-2336. doi: 10.3321/j.issn:0023-074X.1998.21.022

    CrossRef Google Scholar

    [18] 陈文寄, 李齐, 郝杰, 等.冈底斯岩带结晶后的热演化史及其构造含义[J].中国科学(D辑), 1999, 29(1):9-15.

    Google Scholar

    [19] Harrison T M, Yin A, Grove M. The ZedongWindow:A record of superposedTertiaryconvergencein southeasternTibet[J]. Journal of Geophysical Research, 2000, 105(B8):19211-19230. doi: 10.1029/2000JB900078

    CrossRef Google Scholar

    [20] 袁万明, 候增歉, 李胜荣, 等.雅鲁藏布江逆冲带活动的裂变径迹定年证据[J].科学通报, 2002, 47(2):147-150.

    Google Scholar

    [21] 向树元, 张士贞, 胡敬仁, 等.西藏米拉山断裂活动的磷灰石裂变径迹证据[J].地球科学-中国地质大学学报, 2012, 37, 增刊2:39-46.

    Google Scholar

    [22] 吴珍汉, 江万, 周继荣, 等.青藏高原腹地典型岩体热历史与构造-地貌演化过程的热年代学分析[J].地质学报, 2001, 75(4):468-476.

    Google Scholar

    [23] 丁林, 钟大赉, 潘裕生, 等.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J].科学通报, 1995, 40(16):1497-1500. doi: 10.3321/j.issn:0023-074X.1995.16.018

    CrossRef Google Scholar

    [24] 赵志丹, 莫宣学, 郭铁鹰, 等.西藏南部岩体裂变径迹年龄与高原隆升[J].自然科学进展, 2003, 13(8):877-880.

    Google Scholar

    [25] 王立成, 魏玉帅.西藏羌塘盆地白垩纪中期构造事件的磷灰石裂变径迹证据[J].岩石学报, 2013, 29(3):1039-1047.

    Google Scholar

    [26] Lu L, Zhao Z, Wu Z H, et al. Fission track thermochronology evidence for the Cretaceous and Paleogene tectonic event of Nyainrong Microcontinent, Tibet[J]. Acta Geologica Sinica, 2015, 89(1):133-144. doi: 10.1111/1755-6724.12400

    CrossRef Google Scholar

    [27] Yin A, Harrison T M, Murphy M A, et al. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision[J]. Geological Society of America Bulletin, 1999, 111(11):1644-1664. doi: 10.1130/0016-7606(1999)111<1644:TDHOSA>2.3.CO;2

    CrossRef Google Scholar

    [28] Wu Z H, Hu D G, Ye P S. Thrusting of the North Lhasa Block in the Tibetan Plateau[J]. Acta Geologica Sinica, 2004, 78(1):246-259.

    Google Scholar

    [29] 叶培盛. 拉萨地块中部蛇绿岩与逆冲推覆构造[D]. 中国地质科学院博士学位论文, 2004.http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213421.htm

    Google Scholar

    [30] Yuan W M, Zhang X T, Dong J Q, et al. A new vision of the intracontinental evolution of the eastern Kunlun Mountains, Northern Qinghai-Tibet Plateau, China[J]. Radiation Measurements, 2003, 36:357-362. doi: 10.1016/S1350-4487(03)00151-3

    CrossRef Google Scholar

    [31] Bellemans F, Decorte F, Denhaute P V. Composition of SRM and CN U-doped glasses:significance for their use as thermal neutron fluence monitors in fission track dating[J]. Radiation Measurements, 1995, 24(2):153-160. doi: 10.1016/1350-4487(94)00100-F

    CrossRef Google Scholar

    [32] Yuan W M, Dong J Q, Carter A, et al. Mesozoic-Tertiary exhumation history of the Altai Mountains, northern Xinjiang, China:constraints from apatite fission track data[J]. Tectonophysics, 2006, 412:183-193. doi: 10.1016/j.tecto.2005.09.007

    CrossRef Google Scholar

    [33] Hurford A J, Green P F. The zeta age calibration of fission-track dating[J]. Chemical Geology, 1983, 41:285-317. doi: 10.1016/S0009-2541(83)80026-6

    CrossRef Google Scholar

    [34] Green P F, Duddy I R, Gleadow A J W, et al. Thermal annealing of fission tracks in apatite:1. A qualitative description[J]. Chemical Geology:Isotope Geoscience section, 1986, 59:237-253. doi: 10.1016/0168-9622(86)90074-6

    CrossRef Google Scholar

    [35] Green P F. A New Look at Statistics in Fission Track Dating[J]. Nucl Tracks, 1981, 5:77-86. doi: 10.1016/0191-278X(81)90029-9

    CrossRef Google Scholar

    [36] Galbraith R F, Laslett G M. Statistical models for mixed fissiontrack ages[J]. Nuclear Tracks and Radiation Measurements, 1993, 2(4):459-470.

    Google Scholar

    [37] Brandon M. Decomposition of mixed grain age distributions using BINOMFIT[J].On Track, 2002, 24:13-18.

    Google Scholar

    [38] 赵珍, 吴珍汉, 胡道功, 等.青藏高原冈底斯带南缘泽当多金属矿田多期岩浆活动及年代意义[J].地球学报, 2014, 35(6):703-712. doi: 10.3975/cagsb.2014.06.05

    CrossRef Google Scholar

    [39] Armstrong P A.Thermochronometers in sedimentary basins[J]. Reviews in Mineralogy and Geochemistry, 2005, 58(1):499-525. doi: 10.2138/rmg.2005.58.19

    CrossRef Google Scholar

    [40] Ketcham R A, Donelick R A, Carlson W D. Variability of apatite fission-track annealing kinetics Ⅲ:Extrapolation to geological time scales[J]. American Mineralogist, 1999, 84:1235-1255. doi: 10.2138/am-1999-0903

    CrossRef Google Scholar

    [41] Ketcham R A, Donelick R A, Donelick M B. AFT Solve:A program for multi-kinetic modeling of apatite fission-track data[J]. Geological Materials Research, 2000, 2(1):1-32.

    Google Scholar

    [42] 陈文寄, 李齐, 周新华, 等.西藏高原南部两次快速冷却事件的构造含义[J].地震地质, 1996, 18(2):109-115.

    Google Scholar

    [43] Quidelleur X, Grove M, Lovera O. Thermal evolution and slip history of the Renbu Zedong Thrust, southeastern Tibet[J]. Journal of Geophysical Research, 1997, 102(B2):2659-2679. doi: 10.1029/96JB02483

    CrossRef Google Scholar

    [44] Guillot S, Hodges K, Lefort P, et al. New constraints on the age of the Manasluleucogranite:Evidence for episodic tectonic denudation in the Central Himalayas[J]. Geology, 1994, 22(6):559-562. doi: 10.1130/0091-7613(1994)022<0559:NCOTAO>2.3.CO;2

    CrossRef Google Scholar

    [45] Coleman M, Hodges K. Evidence for Tibetan plateau uplift before 14Myr ago from a new minimum age for east-west extension[J]. Nature, 1995, 374(6517):49-52. doi: 10.1038/374049a0

    CrossRef Google Scholar

    [46] Murphy M A, Harrison T M. Relationship between leucogranites and the Qomolangma detachment in the Rongbuk valley, South Tibet[J]. Geology, 1999, 27(9):831-834. doi: 10.1130/0091-7613(1999)027<0831:RBLATQ>2.3.CO;2

    CrossRef Google Scholar

    [47] 丁林, 岳雅慧, 蔡福龙, 等.西藏拉萨地块高镁超钾质火山岩及对南北向裂谷形成时间和切割深度的制约[J].地质学报, 2006, 80(9):1252-1261.

    Google Scholar

    [48] Harrison T M, Copeland P, Kidd W S F, et al. Activation of the Nyainqentanghla shear zone:implications for uplift of the southern Tibetan Plateau[J]. Tectonics, 1995, 14(3):658-676. doi: 10.1029/95TC00608

    CrossRef Google Scholar

    [49] 吴珍汉, 江万, 周继荣, 等.青藏高原腹地典型岩体热历史与构造-地貌演化过程的热年代学分析[J].地质学报, 2001, 75(4):468-476.

    Google Scholar

    [50] 吴珍汉, 江万, 吴中海, 等.青藏高原腹地典型盆-山构造形成时代[J].地球学报, 2002, 23(4):289-294.

    Google Scholar

    [51] 袁万明, 董金泉, 保增宽, 等.西藏冈底斯地块尼木地区新第三纪构造热史的磷灰石裂变径迹约束[J].原子能科学技术, 2008, 42(6):570-573.

    Google Scholar

    [52] 祝嵩. 雅鲁藏布江河谷地貌与地质环境演化[D]. 中国地质科学院博士学位论文, 2012.http://cdmd.cnki.com.cn/Article/CDMD-82501-1012371268.htm

    Google Scholar

    [53] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annu. Rev. Earth Planet Sci., 2000, 28:211-280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    [54] 吴珍汉, 叶培盛, 胡道功, 等.拉萨地块北部逆冲推覆构造系统[J].地质论评, 2003, 49(1):74-81.

    Google Scholar

    [55] Currie B S, Rowley D, Tabor N. Middle Miocene paleoaltimetry of southern Tibet:Implications for the role of mantle thickening and delamination in the Himalayan orogeny[J].Geology, 2005, 33(3):181-184. doi: 10.1130/G21170.1

    CrossRef Google Scholar

    [56] Copeland P, Harrison T M, Yun P. et al. Thermal evolution of the Gangdese batholith, southern Tibet:a history of episodic unroofing[J]. Tectonics, 1995, 14(2):223-236. doi: 10.1029/94TC01676

    CrossRef Google Scholar

    [57] Wang Q, Wyman D A, Xu J F, et al. Eocene melting of subducting continental crust and early uplifting of central Tibet:Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacitesandrhyolites[J]. Earth and Planetary Science Letters, 2008, 272(1/2):158-171.

    Google Scholar

    [58] Wang Q, Wyman D A, Li Z X, et al. Eocene north-south trending dikes in central Tibet:New constraints on the timing of eastwest extension with implications for early plateau uplift?[J]. Earth and Planetary Science Letters, 2010, 298:205-216. doi: 10.1016/j.epsl.2010.07.046

    CrossRef Google Scholar

    [59] 吴珍汉, 吴中海, 胡道功, 等.青藏高原古大湖与夷平面的关系及高原面形成演化过程[J].现代地质, 2009, 23(6):993-1002.

    Google Scholar

    [60] 李亚林, 王成善, 伊海生, 等.西藏北部新生代大型逆冲推覆构造与唐古拉山的隆起[J].地质学报, 2006, 80(8):1118-1130.

    Google Scholar

    中国地质科学院成都地质矿产研究所. 青藏高原及邻区地质图(1: 1500000). 1988.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(2)

Article Metrics

Article views(1024) PDF downloads(5) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint