2017 Vol. 36, No. 8
Article Contents

YANG Zeli, WANG Shuqing, HU Xiaojia, ZHAO HuaLei, LI Chengdong, XIN Houtian, SUN Lixin. Petrogenesis of the Early Paleozoic Jiergalangtu pluton in Inner Mongolia:Constraints from geochronology, geochemistry and Nd-Hf isotopes[J]. Geological Bulletin of China, 2017, 36(8): 1369-1384.
Citation: YANG Zeli, WANG Shuqing, HU Xiaojia, ZHAO HuaLei, LI Chengdong, XIN Houtian, SUN Lixin. Petrogenesis of the Early Paleozoic Jiergalangtu pluton in Inner Mongolia:Constraints from geochronology, geochemistry and Nd-Hf isotopes[J]. Geological Bulletin of China, 2017, 36(8): 1369-1384.

Petrogenesis of the Early Paleozoic Jiergalangtu pluton in Inner Mongolia:Constraints from geochronology, geochemistry and Nd-Hf isotopes

More Information
  • Early Paleozoic granites are distributed on the northern margin of Xingmeng orogenic belt discretely, and the genesis of these granites has important implications for the reconstruction of regional Paleozoic tectonic setting and orogenic evolution. Jier-galangtu pluton outcropped in northern Abag Banner and located in the middle of the early Paleozoic granite belt is the biggest com-posite pluton in the granite belt. Zircon LA-ICP-MS U-Pb dating shows that the early stage of the pluton was emplaced during 455.0~495.6Ma. Geochemically, the Jiergalangtu granites show moderate SiO2 values (59.49%~68.22%) and depletion of magnesium and iron, with K2O/Na2O ratios less than 1 (0.64~0.85) and A/CNK values being 0.96~1.09; in addition, most of the samples present subalkaline and weak per-aluminous signature. The trace element data of these rocks display enrichment of Cs, Rb, Th, U, Pb and depletion of Ba, Sr, P and HFSE such as Nb, Ta, the pluton exhibits indistinct negative europium anomalies(δEu=0.04~0.25) with moderate total REE content. Jiergalangtu pluton shows depleted isotopic compositions, (87Sr/86Sr)i=0.7053~0.7034, εNd(t)=0.39~4.29, and both samples for Hf isotopic analysis have positive εHf(t) values, being 7.6~10.8 and 3.7~7.9 respectively. Integrated geochemical, geochronology and Sr-Nd-Hf isotopic data suggest that the Jiergalangtu granites were generated in early Paleozoic and resulted from the subduction of Paleo-Asian Ocean along Sunid-Xilinhot. The granites were formed by partial melting of juvenile crust which was modified by subduction slab fluids. The back-arc extension and opening of Hegenshan Ocean possibly resulted in the separation of Jiergalagntu pluton from predominant Sunid-Xilinhot island arc. Along with the closure of Paleo-Asian Ocean, the pluton ultimately occurred on the northern margin of Xingmeng orogenic belt and was separated from the subduction zone by He-genshan ophiolite complex.

  • 加载中
  • [1] Wu F Y, Jahn B M, Wilde S, et al. Phanerozoic Crustal Growth:UPb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China[J]. Tectonophysics, 2000, 328(1/2):89-113.

    Google Scholar

    [2] Jahn B M, Capdevila R, Liu D Y, et al. Sources of Phanerozoic gran-itoids in the transect Bayanhongor-Ulaan Baatar, Mongolia:geo-chemical and Nd isotopic evidence, and implications for Phanerozo-ic crustal growth[J]. Journal of Asian Earth Sciences, 2004, 23(5):629-653. doi: 10.1016/S1367-9120(03)00125-1

    CrossRef Google Scholar

    [3] Hong D W, Zhang J S, Wang T, et al. Continental Crustal Growth and the Supercontinental Cycle:Evidence from the Central Asian Orogenic Belt[J]. Journal of Asian Earth Science, 2004, 23:799-813. doi: 10.1016/S1367-9120(03)00134-2

    CrossRef Google Scholar

    [4] Wang T, Jahn B M, Kovach P V, et al. Nd-Sr Isotopic Mapping of the Chinese Altai and Implications for Continental Growth in the Central Asian Orogenic Belt[J]. Lithos, 2009, 110(1/4):359-372.

    Google Scholar

    [5] Badarch G, Cunningham W D, Windley B F. A new terrane subdi-vision for Mongolia:implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1):87-110. doi: 10.1016/S1367-9120(02)00017-2

    CrossRef Google Scholar

    [6] Khain E V, Bibikova E V, Salnikova E B, et al. The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic:New Geochro-nologic Data and Palaeotectonic Reconstructions[J]. Precambrian Research, 2003, 122(1/4):329-358.

    Google Scholar

    [7] Windley B F, Alexeiev D, Xiao W, et al. Tectonic models for accre-tion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, London, 2007, 164(12):31-47.

    Google Scholar

    [8] Kröner A, Windley B F, Badarch G. Accretionary Growth and Crust-formation in the Central Asian Orogenic Belt and Compari-son with the Arabian-Nubian Shield[J]. Geological Society of Amer-ica Memoir, 2007, 200:181-209. doi: 10.1130/2007.1200(11)

    CrossRef Google Scholar

    [9] Kröner A, Kovach V, Belousova E, et al. Reassessment of Continen-tal Growth during the Accretionary History of the Central Asian Orogenic Belt[J]. Gondwana Research, 2014, 25(1):103-125. doi: 10.1016/j.gr.2012.12.023

    CrossRef Google Scholar

    [10] 肖文交, 舒良树, 高俊, 等.中亚造山带大陆动力学过程与成矿作用[J].新疆地质, 2008, 26(1):4-8.

    Google Scholar

    [11] Xiao W J, Windley B F, Hao J, et al. Accretion Leading to Colli-sion and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt[J]. Tectonics, 2003, 22(6):1069-1090.

    Google Scholar

    [12] Li J Y. Permian Geodynamic Setting of Northeast China and Adja-cent Regions:Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4):207-224.

    Google Scholar

    [13] Jian P, Liu D Y, Kröner A, et al. Time scale of the early to mid-Pa-leozoic orogenic cycle of the longlived Central Asian Orogenic Belt, Inner Mongolia of China:implications for continental growth[J]. Lithos, 2008, 101(3/4):233-259.

    Google Scholar

    [14] 徐备, 赵盼, 鲍庆中, 等.兴蒙造山带前中生代构造单元划分初探[J].岩石学报, 2014, 30(7):1841-1857.

    Google Scholar

    [15] Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent oro-genic belts in western Inner Mongolia (China):framework, kine-matics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4):1342-1364. doi: 10.1016/j.gr.2012.05.015

    CrossRef Google Scholar

    [16] 陈斌, 赵国春, Wilde S.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J].地质论评, 2001, 47(4):361-367.

    Google Scholar

    [17] 石玉若, 刘敦一, 张旗, 等.内蒙古苏左旗白音宝力道Adakite质岩类成因探讨及其SHRIMP年代学研究[J].岩石学报, 2005, 21(1):143-150.

    Google Scholar

    [18] 王树庆, 辛后田, 胡晓佳, 等.内蒙古乌兰敖包图早古生代侵入岩年代学、地球化学特征及地质意义[J].中国地质大学学报-地球科学, 2016, 41(4):555-569.

    Google Scholar

    [19] Zhang W, Jian P, Kröner A, et al. Magmatic and metamorphic de-velopment of an early to mid-Paleozoic continental margin arc in the southernmost Central Asian Orogenic Belt, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 2013, 72(4):63-74.

    Google Scholar

    [20] 秦亚, 梁一鸿, 邢济麟, 等.内蒙古正镶白旗地区早古生代O型埃达克岩的厘定及其意义[J].地学前缘, 2013, 20(5):106-114.

    Google Scholar

    [21] 杨文麟, 骆满生, 王成刚, 等.兴蒙造山系新元古代-古生代沉积盆地演化[J].地球科学-中国地质大学学报, 2014, 39(8):1155-1168.

    Google Scholar

    [22] 赵利刚, 冉皞, 张庆红, 等.内蒙古阿巴嘎旗奥陶纪岩体的发现及地质意义[J].世界地质, 2012, 31(3):451-461.

    Google Scholar

    [23] 李红英, 周志广, 李鹏举, 等.内蒙古东乌珠穆沁旗晚奥陶世辉长岩地球化学特征及其地质意义[J].地质论评, 2016, 62(2):300-316.

    Google Scholar

    [24] Li Y L, Zhou H W, Brouwer F M, et al. Early Paleozoic to middle Triassic bivergent accretion in the Central Asian Orogenic Belt:in-sights from zirco U-Pb dating of ductile shear zones in central In-ner Mongolia, China[J]. Lithos, 2014, 205(9):84-111.

    Google Scholar

    [25] Jackson S E, Pearson N J, Griffin W L, et al. The application of la-ser ablation-inductively coupled plasma-mass spectrometry (LAICP-MS) to in situ U-Pb zircon geochronology[J]. Chemical Ge-ology, 2004, 211:47-69. doi: 10.1016/j.chemgeo.2004.06.017

    CrossRef Google Scholar

    [26] Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon stan-dards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards and Geoanalytical Research, 1995, 19(1):1-23. doi: 10.1111/ggr.1995.19.issue-1

    CrossRef Google Scholar

    [27] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recy-cling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zir-cons of mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571.

    Google Scholar

    [28] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace el-ements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43.

    Google Scholar

    [29] Ludwig K R. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Special Publication, 2003, 4:1-71.

    Google Scholar

    [30] 耿建珍, 李怀坤, 张健, 等.锆石Hf同位素组成的LA-MC-ICPMS测定[J].地质通报, 2011, 30(10):1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004

    CrossRef Google Scholar

    [31] Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon tex-tures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):469-500. doi: 10.2113/0530469

    CrossRef Google Scholar

    [32] Wright J B. A simple alkalinity ratio and its application to questions of nonorogenic granite genesis[J]. Geological Magazine, 1969, 106(4):370-384 doi: 10.1017/S0016756800058222

    CrossRef Google Scholar

    [33] Le Maitre R W, Bateman P, Dudek A, et al. A Classification of Ig-neous Rocks and Glossary of Terms[M]. Oxford:Blackwell, 1989.

    Google Scholar

    [34] Maniar P, Piccoli P. Tectonic discrimination of granitoids[J]. Geo-logical Society of America Bulletin, 1989, 101:635-643 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [35] McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120:223-253 doi: 10.1016/0009-2541(94)00140-4

    CrossRef Google Scholar

    [36] Boynton W V. Geochemistry of the rare earth elements:meteorite studies[C]//Henderson P. Rare Earth Elements Geochemistry. Am-sterdam:Elsevier, 1984:63-144.

    Google Scholar

    [37] Condie K C. Geochemistry and tectonic setting of early Proterozo-ic supercrustal rocks in the south-western United States[J]. Journal of Geology, 1986, 94:845-864. doi: 10.1086/629091

    CrossRef Google Scholar

    [38] Wu G, Chen Y, Sun F, et al. Geochronology, geochemistry, and Sr-Nd-Hf isotopes of the early Paleozoic igneous rocks in the Du-obaoshan area, NE China, and their geological significance[J]. Jour-nal of Asian Earth Sciences, 2015, 97:229-250. doi: 10.1016/j.jseaes.2014.07.031

    CrossRef Google Scholar

    [39] Yang J H, Wu F Y, Shao J A, et al. Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters, 2006, 246(3/4):336-352

    Google Scholar

    [40] Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the eastern Tienshan (China):implications for the continental growth of Central Asia[J]. Am. J. Sci., 2004, 304:370-395. doi: 10.2475/ajs.304.4.370

    CrossRef Google Scholar

    [41] Chen B, Jahn B M, Tian W. Evolution of the Solonker suture zone:constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction and colli-sion-related magmas and forearc sediments[J]. J. Asian Earth Sci., 2009, 34:245-257. doi: 10.1016/j.jseaes.2008.05.007

    CrossRef Google Scholar

    [42] Eizenhöfer P R, Zhao G, Sun M, et al. Geochronological and Hf isotopic variability of detrital zircons in Paleozoic strata across the accretionary collision zone between the North China craton and Mongolian arcs and tectonic implications[J]. Geological Society of America Bulletin, 2015, 65(4):487-508.

    Google Scholar

    [43] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimina-tion Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25(4):956-983 doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [44] Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism[C]//Coward M P, Reis A C. Colli-sion tectonics. Spec. Publ. Grol. Soc. Lond., 1986, 19:67-81.

    Google Scholar

    [45] Gorton M P, Schandl E V. From Continents to Island Arcs:A Geo-chemical Index of Tectonic Setting for Arc-related and Withinplate Felsic to Intermediate Volcanic Rocks[J]. Canadian Mineralo-gist, 2000, 38(5):1065-1073. doi: 10.2113/gscanmin.38.5.1065

    CrossRef Google Scholar

    [46] Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magma[J]. Annu. Rev. Earth Planet. Sci., 1995, 23:251-285 doi: 10.1146/annurev.ea.23.050195.001343

    CrossRef Google Scholar

    [47] 张旗, 许继峰, 王焰, 等.埃达克岩的多样性[J].地质通报, 2004, 23(Z2):959-965.

    Google Scholar

    [48] 张宏飞, 徐旺春, 郭建秋, 等.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据[J].岩石学报, 2007, 23(6):1347-1353.

    Google Scholar

    [49] 邓晋福, 冯艳芳, 狄永军, 等.岩浆弧火成岩构造组合与洋陆转换[J].地质论评, 2015, 61(3):473-484.

    Google Scholar

    [50] Hirose K. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts[J]. Ge-ology, 1997, 25(1):42-44

    Google Scholar

    [51] Rudnick R L, Gao S. Composition of the continental crust[C]//Holland H D, Turekian K K. The Crust. Treatise on Geochemistry 3. Elsevier-Pergamon, Oxford, 2003:1-64.

    Google Scholar

    [52] Ayers J. Trace element modeling of aqueous fluid-peridotite inter-action in the mantle wedge of subduction zones[J]. Contributions to Mineralogy and Petrology, 1998, 132:390-404. doi: 10.1007/s004100050431

    CrossRef Google Scholar

    [53] Xu B, Zhao G C, Li J H, et al. Ages and hf isotopes of detrital zir-cons from Paleozoic strata in the Chagan Obo Temple area, Inner Mongolia:implications for the evolution of the Central Asian Oro-genic Belt[J].Gondwana Research, 2016, 43:149-163

    Google Scholar

    [54] Jian P, Kröner A, Windley B F, et al. Zircon ages of the Bayank-hongor ophiolite mélange and associated rocks:time constraints on Neoproterozoic to Cambrian accretionary and collisional orogene-sis in central Mongolia[J].Precambrian Research, 2010, 177(1):162-180.

    Google Scholar

    [55] Gibsher A S, Khain E V, Kotov A B, et al. Late Vendian age of the Han-Taishiri ophiolitic complex in western Mongolia[J]. Russ. Ge-ol. Geophys., 2001, 42:1110-1117.

    Google Scholar

    [56] Štípská P, Schulmann K, Lehmann J, et al. Early Cambrian eclog-ites in SW Mongolia:evidence that the Palaeo-Asian Ocean suture extends further east than expected[J]. J. Metamorph. Geol., 2010, 28:915-933. doi: 10.1111/jmg.2010.28.issue-9

    CrossRef Google Scholar

    [57] Demoux A, Kröner A, Liu D Y, et al. Precambrian crystalline basement in southern Mongolia as revealed by SHRIMP zircon dating[J]. Int. J. Earth Sci., 2009, 98:1365-1380. doi: 10.1007/s00531-008-0321-4

    CrossRef Google Scholar

    [58] Zhou J B, Wang B, Wilde S A, et al. Geochemistry and U-Pb zir-con dating of the Toudaoqiao blueschists in the Great Xing'an Range, northeast China, and tectonic implications[J].Journal of Asian Earth Sciences, 2015, 97:197-210. doi: 10.1016/j.jseaes.2014.07.011

    CrossRef Google Scholar

    [59] 冯志强. 大兴安岭北段古生代构造-岩浆演化[D]. 吉林大学博士学位论文, 2015.http://cdmd.cnki.com.cn/Article/CDMD-10183-1015593139.htm

    Google Scholar

    [60] 葛文春, 吴福元, 周长勇, 等.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报, 2005, 50(12):1239-1247. doi: 10.3321/j.issn:0023-074X.2005.12.015

    CrossRef Google Scholar

    [61] 武广, 孙丰月, 赵财胜, 等.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J].科学通报, 2005, 50(20):2278-2288. doi: 10.3321/j.issn:0023-074X.2005.20.017

    CrossRef Google Scholar

    [62] Miao L C, Fan W M, Liu D Y, et al. Geochronology and geochem-istry of the Hegenshan ophiolitic complex:implications for latestage tectonic evolution of the Inner Mongolia-Daxinganling Oro-genic Belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(5/6):348-370.

    Google Scholar

    [63] Jian P, Kröner A, Windley B F, et al. Carboniferous and Creta-ceous mafic-ultramafic massifs in Inner Mongolia (China):a SHRIMP zircon and geochemical study of the previously pre-sumed integral"Hegenshan ophiolite"[J]. Lithos, 2012, 142/143:48-66. doi: 10.1016/j.lithos.2012.03.007

    CrossRef Google Scholar

    [64] 黄波, 付冬, 李树才, 等.内蒙古贺根山蛇绿岩形成时代及构造启示[J].岩石学报, 2016, 32(1):158-176.

    Google Scholar

    天津华北地质勘查局. 1: 5万查干楚鲁廷阿查6幅区域地质调查报告. 2012.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(727) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint