2017 Vol. 36, No. 6
Article Contents

ZHANG Ruixin, YI Li, LIU Hong, YANG Siyu. The effect of iron content on the kinetics of talc dehydration and its geological significance[J]. Geological Bulletin of China, 2017, 36(6): 1051-1055.
Citation: ZHANG Ruixin, YI Li, LIU Hong, YANG Siyu. The effect of iron content on the kinetics of talc dehydration and its geological significance[J]. Geological Bulletin of China, 2017, 36(6): 1051-1055.

The effect of iron content on the kinetics of talc dehydration and its geological significance

More Information
  • The effect of iron content on the kinetics of talc dehydration was studied with talc of different iron values using in-situ synchrotron X-ray diffraction (XRD).The sample particle size is 2~5μm.The air atmosphere synchrotron radiation in situ XRD de-hydration experiment was carried out under atmospheric pressure.High content of iron obviously resulted in lower dehydration tem-perature.The difference of the dehydration temperature of two samples was above 127℃.The dehydration of talc followed random nucleation and growth mechanism, and fitted Avrami equation, with n being 1.669.The results suggest that the dehydration of differ-ent iron values of talc may occur at the different depths around hundreds of kilometers, so the study was significant to the understand-ing of the genetic mechanism of earthquakes in the subduction zone.

  • 加载中
  • [1] 余日东, 金振民.蛇纹石脱水与大洋俯冲带中源地震(70~300km)的关系[J].地学前缘, 2006, 13(2):191-204.

    Google Scholar

    [2] Larson K M, Kostoglodov V, Miyazaki S, et al. The 2006 aseismic slow slip event in Guerrero, Mexico:New results from GPS[J]. Geo-physical Research Letters, 2007, 34(13):256-260.

    Google Scholar

    [3] Song T R, Helmberger D V, Brudzinski M R, et al. Subducting slab ultra-slow velocity layer coincident with silent earthquakes in south-ern Mexico[J]. Science, 2009, 324(5926):502-6. doi: 10.1126/science.1167595

    CrossRef Google Scholar

    [4] Kim Y, Clayton R W, Jackson J M. Geometry and seismic proper-ties of the subducting Cocos plate in central Mexico[J]. Journal of Geophysical Research Atmospheres, 2010, 115(B6):258-273.

    Google Scholar

    [5] Moore D E, Lockner D A. Talc friction in the temperature range 25°-400° C:Relevance for Fault-Zone Weakening[J]. Tectono-physics, 2008, 449(1):120-132.

    Google Scholar

    [6] Mysen B O, Ulmer P, Konzett J, et al. The upper mantle near con-vergent plate boundaries[J]. Reviews in Mineralogy, 1998, 37:97-138.

    Google Scholar

    [7] Bose K, Ganguly J. Thermogravimetric study of the dehydration ki-netics of talc[J]. American Mineralogist, 1994, 79(7):692-699.

    Google Scholar

    [8] Chollet M, Daniel I, Koga K T, et al. Dehydration kinetics of talc and 10Å phase:Consequences for subduction zone seismicity[J]. Earth & Planetary Science Letters, 2009, 284(1/2):57-64.

    Google Scholar

    [9] Wang D, Karato S I. Electrical conductivity of talc aggregates at 0.5GPa:influence of dehydration[J]. Physics & Chemistry of Miner-als, 2012, 40(1):11-17.

    Google Scholar

    [10] Zhang M, Hui Q, Lou X J, et al. Dehydroxylation, proton migra-tion, and structural changes in heated talc:An infrared spectroscop-ic study[J]. American Mineralogist, 2006, 91(5):816-825.

    Google Scholar

    [11] Taylor H F W, Taylor H F W. Homogeneous and Inhomogeneous Mechanisms in the Dehydroxylation of Minerals[J]. Clay Minerals, 1962, 5(28):45-55. doi: 10.1180/claymin

    CrossRef Google Scholar

    [12] Molinamontes E, Donadio D, Hernándezlaguna A, et al. Water Re-lease from Pyrophyllite during the Dehydroxylation Process Ex-plored by Quantum Mechanical Simulations[J]. Journal of Physical Chemistry C, 2013, 117(15):7526-7532. doi: 10.1021/jp310739y

    CrossRef Google Scholar

    [13] Wang D, Yi L, Huang B, et al. High-temperature dehydration of talc:a kinetics study using X-ray powder diffraction[J]. Phase Tran-sitions, 2015, 88(6):1-7.

    Google Scholar

    [14] 王艳, 王多君, 易丽.空气气氛中滑石的热分解动力学实验研究[J].中国科学院大学学报, 2015, 32(1):70-73.

    Google Scholar

    [15] Avrami M. Kinetics of Phase Change 2[J]. Journal of Chemical Physics, 1939, 7(12):1103-1112. doi: 10.1063/1.1750380

    CrossRef Google Scholar

    [16] Avrami M. Kinetics of Phase Change:Ⅱ. Transformation-Time Relation for Random Distribution of Nuclei[J]. Journal of Chemi-cal Physics, 1940, 8(2):212-224. doi: 10.1063/1.1750631

    CrossRef Google Scholar

    [17] Collettini C, Viti C, Smith S A F, et al. Development of intercon-nected talc networks and weakening of continental low-angle nor-mal faults[J]. Sem. Hop., 2009, 33(6):2102-16.

    Google Scholar

    [18] Omori S, Komabayashi T, Maruyama S. Dehydration and earth-quakes in the subducting slab:empirical link in intermediate and deep seismic zones[J]. Physics of the Earth &Planetary Interiors, 2004, 146(1/2):297-311.

    Google Scholar

    [19] Syracuse E M, Keken P E V, Abers G A. The global range of sub-duction zone thermal models[J]. Physics of the Earth & Planetary Interiors, 2010, 183(1/2):73-90.

    Google Scholar

    [20] 申婷婷, 张立飞, 陈晶.俯冲带蛇纹岩的变质过程[J].岩石学报, 2016, 32(4):1206-1218.

    Google Scholar

    [21] Mohsen M D. Dictionary of Gems and Gemology[M]. Springer Berlin Heidelberg. 2009:575.

    Google Scholar

    [22] 赵永红, 施旭, Zimmerman, M, 等.含水对富铁橄榄石流变性的影响[J].岩石学报, 2006, 22(9):2381-2386.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(1123) PDF downloads(4) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint