2017 Vol. 36, No. 5
Article Contents

CAO Liang, DUAN Qifa, PENG Sanguo, ZHOU Yun, LI Kun, GAN Jinmu. Sources of metallogenic materials of lead-zinc deposits in western Hu'nan Province:Evidence from S and Pb isotopes[J]. Geological Bulletin of China, 2017, 36(5): 834-845.
Citation: CAO Liang, DUAN Qifa, PENG Sanguo, ZHOU Yun, LI Kun, GAN Jinmu. Sources of metallogenic materials of lead-zinc deposits in western Hu'nan Province:Evidence from S and Pb isotopes[J]. Geological Bulletin of China, 2017, 36(5): 834-845.

Sources of metallogenic materials of lead-zinc deposits in western Hu'nan Province:Evidence from S and Pb isotopes

  • Located in the southwest of the western Hubei to western Hu'nan metallogentic belt, lead-zinc deposits in western Hu'nan are expected to become the largest lead-zinc deposit basement, with good ore-forming geological background and ore-bear-ing conditions.In this paper, S-Pb isotope compositions of sulfide minerals separated from orebodies in the ore deposits were deter-mined so as to discuss the sources of ore-forming materials.Studies of sulfur and lead isotopic compositions show that the sulfur isoto-pic compositions δ34S in orebodies in western Hu'nan Province are in a wide range of 6.3‰~34.66‰, 19.64‰ on average, with obvi-ous rich heavy sulfur and the characteristics of the distribution of the Twin Towers.Sulfur of the ore mainly came from the marine sul-fate in the ore-bearing formation and seawater.The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios for ore minerals from the eight depos-its are in the ranges of 17.689~18.295, 15.535~18.848 and 37.294~38.630 respectively.As for lead-zinc deposits in this area, lead isoto-pic composition has orogenic belt and upper crust Pb isotopic characteristics, sources of ore-forming materials were from the mixture of orogenic belt and upper crust, lead genetic types are the subduction lead resulting from mixture of upper crust and mantle magma-tism.The authors put forward the lead-zinc ore-forming model of two stages of evolution for deposits of western Hu'nan area.Leadzinc mineralization in the area went through two phases of evolution which included enrichment of ore-forming fluid and migration of ore-forming fluid.

  • 加载中
  • [1] 杨绍祥, 劳可通.湘西北铅锌矿床碳氢氧同位素特征及成矿环境分析[J].矿床地质, 2007, 26(3):330-340.

    Google Scholar

    [2] 杨绍祥, 劳可通.湘西北铅锌矿床的地质特征及找矿标志[J].地质通报, 2007, 26(7):899-908.

    Google Scholar

    [3] 付胜云, 彭志刚, 刘红梅.湘西北铅锌矿带成矿地质特征[J].地质勘查, 2006, 3(3):99-103.

    Google Scholar

    [4] 周云, 段其发, 唐菊兴, 等.湘西地区铅锌矿的大范围低温流体成矿作用——流体包裹体研究[J].地质与勘探, 2014, 50(3):515-532.

    Google Scholar

    [5] 蔡应雄, 杨红梅, 段瑞春, 等.湘西-黔东下寒武统铅锌矿床流体包裹体和硫、铅、碳同位素地球化学特征[J].现代地质, 2014, 28(1):29-41.

    Google Scholar

    [6] 段其发, 曹亮, 曾健康, 等.湘西花垣矿集区狮子山铅锌矿床闪锌矿Rb-Sr定年及地质意义[J].地球科学-中国地质大学学报, 2014, 39(8):977-999.

    Google Scholar

    [7] 夏新阶, 舒见闻.湘西李梅锌矿床地质特征及其成因[J].大地构造与成矿学, 1985, 19(3):197-204.

    Google Scholar

    [8] 刘宝郡, 王剑.湘西花垣李梅铅锌矿区古热液卡斯特特征及其成因研究[J].大地构造与成矿学, 1990, 14(1):57-67.

    Google Scholar

    [9] 舒见闻, 彭国忠.湖南花垣县渔塘铅锌矿床运用地洼学说成矿学找寻富矿的体会[J].大地构造与成矿, 1986, 10(4):359-367.

    Google Scholar

    [10] 罗卫, 尹展, 孔令, 等.花垣李梅铅锌矿集区地质特征及矿床成因探讨[J].地质调查与研究, 2009, 33(3):194-202.

    Google Scholar

    [11] 钟九思, 毛昌明.湘西北密西西比河谷型铅锌矿床特征及成矿机制探讨[J].国土资源导刊, 2007, 6(4):52-56.

    Google Scholar

    [12] 刘文均, 郑荣才.硫酸盐热化学还原反应与花垣铅锌矿床[J].中国科学(D辑), 2000, 30(5):456-464.

    Google Scholar

    [13] 曾勇, 李成君.湘西董家河铅锌矿地质特征及成矿物质来源探讨[J].华南地质与矿产, 2007, 37(3):24-30.

    Google Scholar

    [14] 匡文龙, 刘新华, 陈年生, 等.湘西北下光荣矿区铅锌矿床主要地球化学特征[J].地质科学, 2008, 43(3):685-694.

    Google Scholar

    [15] 周云, 段其发, 陈毓川, 等.湘西龙山江家垭铅锌矿床石英Rb-Sr同位素测年与示踪研究[J].中国地质, 2015, 42(2):597-606.

    Google Scholar

    [16] Ohmoto H. Stable isotope geochemistry of ore deposits[J].Rev. Mineral., 1986, l6(1):491-559.

    Google Scholar

    [17] Hoefs J. Stable Isotope Geochemistry. 4th ed[M]. Berlin:SpringerVerlag, 1997:119-120.

    Google Scholar

    [18] Faure G, Mensing T M. Isotopes:Principles and Applications.3rd ed[M]. New York:John Wiley & Sons, 2005:256-283.

    Google Scholar

    [19] 路远发. GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学, 2004, 33(5):459-464.

    Google Scholar

    [20] 张志辉, 张达, 狄永军, 等.安徽铜陵焦冲金-硫矿床S、Pb同位素组成及其指示意义[J].地质通报, 2013, 32(10):1643-1652. doi: 10.3969/j.issn.1671-2552.2013.10.016

    CrossRef Google Scholar

    [21] 胡永嘉, 陆元庆, 梁学东, 等.南震旦、寒武系海相沉积成因重晶石的硫同位素组成及其在地质学上的意义[J].湖南地质, 1986, 5(1):51-56.

    Google Scholar

    [22] 王忠诚, 储雪蕾, 李仲.高δ34S值重晶石矿床的成因解释[J].地质科学, 1993, 28(2):191-192.

    Google Scholar

    [23] 徐安武, 梅申福等.鄂西震旦系层控铅锌矿成矿条件研究及找矿耙区预测[M].北京:地质出版社, 1993.

    Google Scholar

    [24] Ohmoto H, Rye R O. Isotopes of sulfur and Carbon[C]//Barnes H L.Geochemistry of Hydrothermal Ore Ddeposits(2nd Edition). New York:John Wiley and Sons, 1979:509-567.

    Google Scholar

    [25] 张长青. 中国川滇黔交界地区密西西比型(MVT)铅锌矿床成矿模型[D]. 北京: 中国地质科学院博士学位论文, 2008.

    Google Scholar

    [26] 李宗发.湘黔边境铅锌矿带硫铅同位素组成特征[J].贵州地质, 1992, 9(3):246-254.

    Google Scholar

    [27] Li R, Chen J, Zhang S, et al. Spatial and temporal variation in carbon and sulfur isotopic compositions of Sinian sedimentary rocks in the Yangtze platform, South China[J]. Precambrian Research, 1999, 97:59-75. doi: 10.1016/S0301-9268(99)00022-4

    CrossRef Google Scholar

    [28] 储雪雷, 李任伟, 张同刚, 等.大塘坡期锰铁矿层中黄铁矿异常高δ34S值的意义[J].矿物岩石地球化学通报, 2001, 20(4):320-322.

    Google Scholar

    [29] 李任伟, 张淑坤, 雷加锦, 等.震旦纪地层黄铁矿硫同位素组成时-空变化特征及扬子地块与晚元古超大陆关系的论证[J].地质科学, 1996, 31(3):209-207.

    Google Scholar

    [30] 范祖全, 于明舜, 钟太山, 等.湘西贡溪气液沉积型层状重晶石矿床特征及成因分析[J].矿物岩石, 1986, 6(3):65-75.

    Google Scholar

    [31] Machel H G, Krouse H R, Sassen R.Products and distingueishing criteria of bacterial and thermochemical sulphate reduction[J]. Applied Geochemitry, 1995, 10:373-389. doi: 10.1016/0883-2927(95)00008-8

    CrossRef Google Scholar

    [32] Chang Z, Large R R, Maslennikov V. Sulfur isotopes in sedimenthosted orogenic gold deposits:Evidence for an early timing anda seawater sulfur source[J]. Geology, 2008, 36(12):971-974. doi: 10.1130/G25001A.1

    CrossRef Google Scholar

    [33] 郑永飞, 陈江峰.稳定同位素地球化学[M].北京:科学出版社, 2000.

    Google Scholar

    [34] 韩吟文, 马振东, 张宏飞, 等.地球化学[M].北京:地质出版社, 2003.

    Google Scholar

    [35] Zartman, R. EandDoeB. R. Plumbotectonicsthemodel[J]. Tectonophysics, 1981, 75:135-162. doi: 10.1016/0040-1951(81)90213-4

    CrossRef Google Scholar

    [36] 朱炳泉.地球科学中同位素体系理论与应用——兼论中国大陆壳慢演化[M].北京:科学出版社, 1998.

    Google Scholar

    [37] 刘海臣, 朱炳泉.湘西板溪群及冷家溪群的时代研究[J].科学通报, 1994, 39(4):148-150.

    Google Scholar

    [38] 梁华英.龙山金锑矿床成矿物质来源研究[J].矿床地质, 1989, 8(4):39-48.

    Google Scholar

    [39] 周云, 段其发, 曹亮, 等.湘西-鄂西地区铅锌矿的大范围低温流体成矿作用[J].高校地质学报, 2014, 20(2):198-212.

    Google Scholar

    [40] 段其发. 湘西-鄂西地区震旦系-寒武系层控铅锌矿成矿规律研究[D]. 武汉: 中国地质大学博士学位论文, 2014.

    Google Scholar

    段其发, 曹亮, 周云, 等. 扬子型铅锌矿成矿规律研究与选区评价. 武汉地质调查中心, 2015.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(576) PDF downloads(9) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint