2017 Vol. 36, No. 5
Article Contents

QIU Xiaofei, ZHAO Xiaoming, YANG Hongmei, WEI Yunxu, WU Nianwen, LU Shansong, JANG Tuo, PENG Lianhong. Paleoproterozoic metamorphic event in the nucleus of the Yangtze craton:Evidence from U-Pb geochronology of the metamorphic zircons from the khondalite[J]. Geological Bulletin of China, 2017, 36(5): 706-714.
Citation: QIU Xiaofei, ZHAO Xiaoming, YANG Hongmei, WEI Yunxu, WU Nianwen, LU Shansong, JANG Tuo, PENG Lianhong. Paleoproterozoic metamorphic event in the nucleus of the Yangtze craton:Evidence from U-Pb geochronology of the metamorphic zircons from the khondalite[J]. Geological Bulletin of China, 2017, 36(5): 706-714.

Paleoproterozoic metamorphic event in the nucleus of the Yangtze craton:Evidence from U-Pb geochronology of the metamorphic zircons from the khondalite

  • Apart from the Archean metamorphic crystal basement, a series of khondalite-bearing graphites and Al-rich minerals are exposed in the Kongling Complex.However, relative to the study of metamorphic crystal basement, geochronological studies of the supracrustal rocks are still very insufficient.In this study, the LA-ICP-MS zircon U-Pb study was carried out for the typical samples of garnet-sillimanite quartzite in the khondalite series.The result shows that the garnet-sillimanite-quartzite was metamorphosed at 1964±12Ma.Combined with the documented zircon U-Pb geochronologic data, the authors hold that the khondalite-series in the Kongling Complex was deposited at 2.1~2.0Ga.The Paleoproterozoic metamorphism and magmatism recognized in the interior of the Yangtze craton are consistent with the worldwide coeval collision-related orogenic event during 2.1~1.8Ga, indicating that this event may have been an important component in the Columbia supercontinent.

  • 加载中
  • [1] Ling W L, Gao S, Zhang B R, et al. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China:implications for amalgamation and break-up of the Rodinia Supercontinent[J]. Precambrian Research, 2003, 122(1):111-140.

    Google Scholar

    [2] Qiu X F, Ling W L, Liu X M, et al. Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton[J]. Precambrian Research, 2011, 191(3/4):101-119.

    Google Scholar

    [3] Qiu X F, Yang H M, Lu S S, et al. Geochronology and geochemistry of Grenville-aged (1063±16Ma) metabasalts in the Shennongjia district, Yangtze block:implications for tectonic evolution of the South China Craton[J]. International Geology Review, 2015, 57(1):76-96. doi: 10.1080/00206814.2014.991949

    CrossRef Google Scholar

    [4] 邱啸飞, 凌文黎, 柳小明, 等.扬子克拉通北缘神农架群火山岩锆石Hf同位素特征[J].地质通报, 2013, 32(9):1394-1401.

    Google Scholar

    [5] Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China[J]. Precambrian Research, 2006, 151(3):265-288.

    Google Scholar

    [6] Wu Y B, Gao S, Gong H J, et al. Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton:refining the timing of Palaeoproterozoic high-grade metamorphism[J]. Journal of Metamorphic Geology, 2009, 27(6):461-477. doi: 10.1111/jmg.2009.27.issue-6

    CrossRef Google Scholar

    [7] 彭松柏, 李昌年, Kusky T M, 等.鄂西黄陵背斜南部元古宙庙湾蛇绿岩的发现及其构造意义[J].地质通报, 2010, 29(1):8-20.

    Google Scholar

    [8] Peng S B, Kusky T M, Jiang X F, et al. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton:Implications for South China's amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 2012, 21(2/3):577-594.

    Google Scholar

    [9] Wu Y B, Gao S, Zhang H F, et al. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the Northwestern Yangtze Block and its geological implications[J]. Precambrian Research, 2012, 200(2/3):26-37.

    Google Scholar

    [10] 邱啸飞, 凌文黎, 柳小明.扬子陆核与神农架地块中元古代相互关系:来自锆石U-Pb年代学和Hf同位素的约束[J].地质科技情报, 2014, 33(2):1-8.

    Google Scholar

    [11] Qiu Y M, Gao S, McNaughton N J, et al. First evidence of > 3.2Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tec-tonics[J]. Geology, 2000, 28(1):11-14. doi: 10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2

    CrossRef Google Scholar

    [12] Jiao W F, Wu Y B, Yang S H, et al. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition[J]. Science in China Series D:Earth Sciences, 2009, 52(9):1393-1399. doi: 10.1007/s11430-009-0135-7

    CrossRef Google Scholar

    [13] Gao S, Yang J, Zhou L, et al. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses[J]. American Journal of Science, 2011, 311(2):153-182. doi: 10.2475/02.2011.03

    CrossRef Google Scholar

    [14] Chen K, Gao S, Wu Y B, et al. 2.6-2.7Ga crustal growth in Yangtze craton, South China[J]. Precambrian Research, 2013, 224:472-490. doi: 10.1016/j.precamres.2012.10.017

    CrossRef Google Scholar

    [15] Guo J L, Gao S, Wu Y B, et al. 3.45Ga granitic gneisses from the Yangtze Craton, South China:Implications for Early Archean crust-al growth[J]. Precambrian Research, 2014, 242(3/4):82-95.

    Google Scholar

    [16] 姜继圣.黄陵变质地区的同位素地质年代及地壳演化[J].吉林大学学报(地球科学版), 1986, 3:1-11.

    Google Scholar

    [17] Yin C Q, Lin S F, Davis D W, et al. 2.1-1.85Ga tectonic events in the Yangtze Block, South China:Petrological and geochronologi-cal evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia[J]. Lithos, 2013, 182:200-210.

    Google Scholar

    [18] Peng M, Wu Y B, Wang J, et al. Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication[J]. Chinese Science Bulletin, 2008, 54(6):1098-1104.

    Google Scholar

    [19] Zhang S B, Zheng Y F, Zhao Z F, et al. Origin of TTG-like rocks from anatexis of ancient lower crust:Geochemical evidence from Neoproterozoic granitoids in South China[J]. Lithos, 2009, 113(3/4):347-368.

    Google Scholar

    [20] Gao S, Ling W L, Qiu Y M, et al. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton:Evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 1999, 63(13):2071-2088.

    Google Scholar

    [21] 湖北省地矿局.湖北省区域地质志[M].北京:地质出版社, 1990:1-662.

    Google Scholar

    [22] 马大铨, 李志昌.鄂西崆岭杂岩的组成, 时代及地质演化[J].地球学报:中国地质科学院院报, 1997, 18(3):233-241.

    Google Scholar

    [23] Ling W L, Gao S, Zheng H F, et al. Sm-Nd isotopic dating of Kongling terrain[J]. Chinese Science Bulletin, 1998, 43(1):86-89. doi: 10.1007/BF02885525

    CrossRef Google Scholar

    [24] 李志昌, 方向.鄂西黄陵地区太古宙变质岩La-Ce同位素体系[J].地球化学, 1998, 27(2):117-124.

    Google Scholar

    [25] 魏君奇, 王建雄.崆岭杂岩中斜长角闪岩包体的锆石年龄和Hf同位素组成[J].高校地质学报, 2012, 18(4):589-600.

    Google Scholar

    [26] Ling W L, Gao S, Zhang B R, et al. The recognizing of ca. 1.95Ga tectono-thermal eventin Kongling nucleus and its significance for the evolution of Yangtze Block, South China[J]. Chinese Science Bulletin, 2001, 46(4):326-329. doi: 10.1007/BF03187196

    CrossRef Google Scholar

    [27] Liu Y S, Kelemen P B, Zong K Q, et al. Geochemistry and magmatic history of eclogues and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 2008, 247:133-153. doi: 10.1016/j.chemgeo.2007.10.016

    CrossRef Google Scholar

    [28] Sláma J, Kosler J, Condon D J, et al. Plesovice zircon:A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249:1-35. doi: 10.1016/j.chemgeo.2007.11.005

    CrossRef Google Scholar

    [29] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位UPb定年技术[J].矿床地质, 2009, 28(4):481-492.

    Google Scholar

    [30] Ludwig K R. User's manual for Isoplot/Ex (rev. 2.49):A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Special Publication, 2001, No. 1a:1-50.

    Google Scholar

    [31] Williams I S, Claesson S. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides[J]. Contributions to Mineralogy and Petrology, 1987, 97:205-217. doi: 10.1007/BF00371240

    CrossRef Google Scholar

    [32] Bingen B, Austrheim H, Whitehouse M J, et al. Trace element signature and U-Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway[J]. Contributions to Mineralogy and Petrology, 2004, 147(6):671-683. doi: 10.1007/s00410-004-0585-z

    CrossRef Google Scholar

    [33] Schaltegger U, Fanning C M, Günther D, et al. Growth, annealing and recrystallization of zircon and preservation of monazite in highgrade metamorphism:conventional and insitu U-Pb isotope, cathodoluminescence and microchemical evidence[J]. Contributions to Mineralogy and Petrology, 1999, 134:186-201. doi: 10.1007/s004100050478

    CrossRef Google Scholar

    [34] Zhang S B, Zheng Y F, Wu Y B, et al. Zircon isotope evidence for ≥ 3.5Ga continental crust in the Yangtze craton of China[J]. Precambrian Research, 2006, 146(1/2):16-34.

    Google Scholar

    [35] 卢良兆, 徐学纯.中国北方早前寒武纪孔兹岩系[J].地质科技情报, 1998, 9:60-62.

    Google Scholar

    [36] 魏君奇, 景明明.崆岭杂岩中角闪岩类的年代学和地球化学[J].地质科学, 2013, 48(4):970-983.

    Google Scholar

    [37] Santosh M, Tsunogae T, Li J, et al. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton:implications for Paleoproterozoic ultrahigh temperature metamorphism[J]. Gondwana Research, 2007, 11(3):263-285. doi: 10.1016/j.gr.2006.10.009

    CrossRef Google Scholar

    [38] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited[J]. Precambrian Research, 2005, 136(2):177-202. doi: 10.1016/j.precamres.2004.10.002

    CrossRef Google Scholar

    [39] Kröner A, Jaeckel P, Brandl G, et al. Single zircon ages for granitoid gneisses in the Central Zone of the Limpopo Belt, Southern Africa and geodynamic significance[J]. Precambrian Research, 1999, 93(4):299-337. doi: 10.1016/S0301-9268(98)00102-8

    CrossRef Google Scholar

    [40] Zhao G C, Sun M, Wilde S A, et al. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia Supercontinent:records in the North China Craton[J]. Gondwana Research, 2003, 6(3):417-434. doi: 10.1016/S1342-937X(05)70996-5

    CrossRef Google Scholar

    [41] Cawood P A, Wang Y J, Xu Y J, et al. Locating South China in Rodinia and Gondwana:A fragment of greater India lithosphere?[J]. Geology, 2013, 41(8):903-906. doi: 10.1130/G34395.1

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(1393) PDF downloads(10) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint